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ABSTRACT

Establishing common knowledge about environmental conditions, task objectives, and coordination rules is crucial for im-
proving the collaborative efficiency of swarm robots. In complex scenarios, relying on a centralized facility to maintain this
knowledge is impractical, necessitating a decentralized approach. Blockchain technology offers a promising solution for
decentralization and can tolerate some degree of malicious or malfunctioning entities. However, widely used blockchain
approaches, such as those employed in Ethereum and relying on proof-of-work (PoW) or proof-of-authority (PoA), demand
significant computational resources, rendering them impractical for swarm robotics applications. This paper introduces PTEE-
BFT, a novel parallel Byzantine fault tolerance protocol leveraging the trusted platform module (TPM). PTEE-BFT employs a
Unique Sequential Identifier Generator (USIG) to ensure the monotonicity, uniqueness, and order of messages, thereby
reducing the number of communication phases and replicas required. This significantly enhances the efficiency and fault
tolerance of the consensus process. Additionally, PTEE-BFT implements parallel processing strategies to substantially increase
blockchain system throughput. Furthermore, we develop an algorithm that enables the robot swarm to recognize attacks from a
specific type of malicious robot known as Byzantine robots. Our experimental analysis and performance evaluation demonstrate
that PTEE-BFT achieves an optimal balance among performance, scalability, and fault tolerance, outperforming practical
Byzantine fault tolerance (PBFT). Results from physical robots show that our approach significantly reduces computing
overhead and accelerates consensus formation compared to baseline solutions. This represents a significant advancement in
blockchain consensus mechanisms for swarm robotics.

1 | Introduction

Swarm robotics, involving networks of cooperative autonomous
robots designed to perform tasks collectively, holds significant
practical and research value (Debie et al. 2023; Nguyen
et al. 2020). Inspired by natural systems such as ant colonies
and bee swarms, the collective behavior of these robots finds
applications in agriculture, search-and-rescue operations, and
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complex industrial processes. As the deployment of swarm
robotics expands, ensuring their reliable and safe operation in
challenging or unpredictable environments becomes critically
important (Abouelyazid 2023).

To achieve secure operation and consistent decision-making in
swarm robots, blockchain technology has been introduced to
ensure that all nodes in the network agree on the transaction
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and data state (Xu et al. 2023). Blockchain's decentralized and
immutable characteristics provide a reliable framework for
swarm robots to address these challenges. The immutability of
blockchain ensures the integrity of all transactions and data
records, with each robot node maintaining a copy of the entire
network state, enabling immediate detection of any data tam-
pering. Furthermore, the decentralized structure of blockchain
enhances the fault tolerance and stability of the system, en-
suring continuous operation even when some nodes fail or are
attacked (Thakur et al. 2023).

However, current research primarily focuses on blockchain
consensus mechanisms to achieve transaction consensus rather
than decision consensus (Bao et al. 2023). This has led to a
misunderstanding of blockchain's application in swarm robot-
ics, conflating transaction consensus with decision consensus.
Transaction consensus ensures that all nodes agree on trans-
action records, guaranteeing data integrity and tamper resist-
ance (Singh et al. 2020). In contrast, decision consensus focuses
on achieving agreement on actions or strategy decisions among
multiple robots, a crucial aspect of swarm robotic systems
(Yuan and Ishii 2022, 2024).

Existing studies often fail to distinguish between transaction
consensus and decision consensus, leading to confusion about
their roles and application scenarios (Strobel et al. 2020, 2023).
This confusion not only impacts the understanding of block-
chain's potential advantages in swarm robotics but also hinders
the optimization and improvement of research targeting dif-
ferent application scenarios. Future research should focus on
distinguishing these two consensus mechanisms and investi-
gating their specific applications in swarm robotics to fully
leverage blockchain technology's potential in ensuring safe and
consistent decision-making in swarm robots. This paper pri-
marily focuses on the efficiency and fault tolerance of block-
chain consensus mechanisms, as they form the foundation for
decision consensus. The efficiency and Byzantine fault toler-
ance (BFT) capabilities of blockchain consensus mechanisms
determine the overall efficiency and robustness of the decision-
making process in swarm robotic systems.

Traditional blockchain consensus algorithms, such as proof of
work (PoW) and proof of stake (PoS), cannot meet the unique
needs of swarm robotics, such as real-time performance and
resource constraints (Gervais et al. 2016). Recent studies have
explored lightweight consensus mechanisms tailored for the
resource-constrained environments typical of swarm robotics,
such as BFT (Driscoll et al. 2003; Distler 2021). These mecha-
nisms focus on achieving rapid consensus with minimal com-
putational overhead, ensuring that the swarm can operate
efficiently in real-time applications. Therefore, BFT consensus
protocols are particularly suitable for environments requiring
quick consensus while allowing relatively low fault thresholds.

The classical approach to BFT consensus involves algorithms
like practical BFT (PBFT) (Castro and Liskov 1999). However,
PBFT requires 3f + 1 replicas, which must be diverse (different
operating systems, software) to withstand attacks and intru-
sions, thereby increasing the additional costs associated with
more replicas (hardware, software development, management,
and so on). Additionally, PBFT can only scale to a limited

number of nodes because it needs to exchange O (n?) messages
among n servers to reach consensus (Ahmad et al. 2021). PBFT
often does not scale efficiently in the context of swarm robotics,
which may involve hundreds to thousands of nodes with high
mobility and frequent state changes (Krishnamohan 2022).
Therefore, enhancing the scalability and performance of BFT
protocols and reducing fault tolerance costs are crucial for their
practical deployment in swarm robotic systems.

Based on this analysis, we introduce a novel parallel BFT pro-
tocol based on trusted execution environments (PTEE-BFT) that
not only reduces communication phases through trusted
counters but also supports parallel operations within and
between consensus threads. Specifically, the main contributions
are summarized as follows:

1. BFT Consensus: We propose PTEE-BFT for swarm
robotics, utilizing a TPM-based unique sequential identi-
fier generator (USIG) to generate unique identifiers, en-
suring the monotonicity, uniqueness, and orderliness of
messages. This reduction in communication phases en-
hances consensus efficiency. Additionally, PTEE-BFT
requires only 2f + 1 nodes in the consensus process to
withstand attacks from f Byzantine nodes, effectively
reducing the cost of tolerating intrusions.

2. Multi-Level Parallel Processing: PTEE-BFT introduces
multi-level parallel processing, enabling parallel opera-
tions between transaction packaging and consensus
threads, as well as within the consensus threads. This
includes parallel processing during block batch produc-
tion and block pipeline execution phases. Such multi-level
parallelism significantly enhances the efficiency of swarm
robotics.

3. Experimental Validation: We conducted practical
deployment tests in a collective decision-making scenario
where the robot swarm moves on a floor covered with
black and white tiles and determines the relative fre-
quency of the white tiles in a ROS2 environment. Ex-
perimental results indicate that PTEE-BFT surpasses
PBFT in efficiency, scalability, and fault tolerance, con-
firming its effectiveness in swarm robotics scenarios and
demonstrating superior operational capabilities.

The structure of this paper is as follows: Section 2 details ex-
isting BFT consensus protocols and their limitations. Section 3
introduces the framework of the PTEE-BFT protocol. Section 4
describes the design and working mechanism of the PTEE-BFT
protocol, the normal operation process, and view switching.
Section 5 presents the performance advantages of PTEE-BFT
through experiments and performance analysis. Finally, Sec-
tion 6 summarizes the main contributions of this paper and
outlines future research directions.

2 | Related Work

Swarm robotics, characterized by decentralized control and the
absence of centralized failure points, underscores the impor-
tance of robust consensus mechanisms to facilitate collective
decision-making. Key attributes of swarm robots include
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scalability, flexibility, and the ability to accomplish complex
tasks through simple individual behaviors and local interac-
tions. Nevertheless, these systems face significant security
challenges due to their distributed nature, rendering them
vulnerable to individual robot failures or malicious attacks that
could compromise the collective outcome.

Strobel et al. (2020) demonstrated how a swarm of robots can
achieve consensus in the presence of Byzantine robots by
leveraging blockchain technology. However, they did not dis-
tinguish between blockchain consensus and consistency deci-
sions, conflating the two concepts and treating consistency
decisions as part of blockchain consensus. Moreover, employing
the PoW consensus protocol results in poor efficiency and
scalability for swarm robotics systems. Addressing these chal-
lenges, Song et al. (2023) presented a distributed swarm system
utilizing PBFT to ensure secure and reliable coordination
among small UAVSs, enabling them to perform various missions
while maintaining fault tolerance and resilience against mali-
cious attacks. Krishnamohan et al.(2022) surveyed existing
blockchain consensus algorithms and their suitability for
swarm robotics, including proof of resource, proof of authority,
and Byzantine agreement. Their survey highlighted the limita-
tions of current blockchain consensus algorithms and con-
cluded that a novel consensus approach is required for swarm
robot systems. However, these solutions primarily focus on
blockchain consensus for resisting Byzantine behaviors,
neglecting the efficiency of blockchain consensus mechanisms.

Swarm robots require consensus protocols that maintain high
fault tolerance while supporting scalable and efficient opera-
tions. Key requirements for these protocols include low latency
and minimal communication overhead. Traditional PBFT has
been associated with low efficiency and high costs. Conse-
quently, some research efforts aim to reduce the number of
nodes and communication phases to enhance consensus per-
formance. Kotla et al. proposed Zyzzyva (Kotla et al. 2010),
which utilizes speculation to enhance performance. Under
normal operating conditions, Zyzzyva reduces the overhead of
state machine replication to nearly optimal levels. However, if
the primary node errs, it must switch to the PBFT view change
process, which does not offer a clear advantage against Byzan-
tine node attacks. Distler et al. (2016) introduced a resource-
efficient BFT (ReBFT) replication architecture, where only a
subset of replicas runs the consensus protocol under normal
conditions. Despite its improvements, ReBFT shares similar
drawbacks with Zyzzyva, trading off security for efficiency, and
its effectiveness diminishes under malicious node attacks.
FastBFT protocol (Liu et al. 2018) balances computational and
communication loads by arranging nodes in a tree topology.
FastBFT adopts an optimistic BFT paradigm (Distler
et al. 2015), requiring only a portion of the active nodes to
participate in the consensus. However, FastBFT relies on a
relatively stable cluster environment, where malicious nodes
can intentionally trigger member replacement in tree topology
communication.

To address these challenges, some researchers have moved
away from optimistic paradigms to improve the efficiency of
consensus protocols, instead opting for asynchronous consensus
protocols. HotStuff (Yin et al. 2019) implements linear leader

changes using CPU pipelining concepts. This mechanism
reduces the communication complexity of the BFT protocol to
0O(n), enhancing scalability. However, proposals in this protocol
require three rounds of interaction before they can be com-
mitted, adding extra communication delay. Miller et al. (Miller
et al. 2016) proposed HoneyBadgerBFT, an asynchronous con-
sensus protocol devoid of a specific primary node. However, due
to the iterative nature of asynchronous BFT consensus mech-
anisms, achieving a final consensus result incurs higher latency.

Several studies have explored using hardware security to reduce
the number of replicas and communication phases in BFT pro-
tocols (Veronese et al. 2011; Chun et al. 2007; Correia et al. 2005;
Kapitza et al. 2012; Levin et al. 2009; Veronese et al. 2010; Wang
et al. 2024). For instance, MinBFT (Veronese et al. 2011) utilizes
a trusted counter within the primary node to assign sequence
numbers to client requests, leveraging the TEE's guarantee of
counter monotonicity to prevent assigning the same counter
value to different messages. Consequently, the communication
phases are reduced from three to two. Similarly, MinZyzzyva
uses TEEs to decrease the number of replicas required in Zyz-
zyva, maintaining the same number of communication phases
(Veronese et al. 2011). MinBFT and MinZyzzyva are highly
efficient under this metric, operating with the minimum known
communication steps for nonspeculative and speculative proto-
cols, respectively four (Martin and Alvisi 2006) and three steps
(Kotla et al. 2010). CheapBFT (Kapitza et al. 2012) employs
TEEs within an optimistic BFT protocol framework. In fault-free
scenarios, CheapBFT only needs f+ 1 active replicas to
achieve consensus and execute client requests. Nevertheless,
CheapBFT involves transitioning between three distinct con-
sensus protocols, increasing the complexity of the BFT pro-
gramming model.

3 | Framework and Preliminaries

As shown in Figure 1, the PTEE-BFT protocol incorporates two-
stage parallel processing, and each Consensus thread includes a
three-phase communication. The following provides an ex-
planation of the nodes, threads, processes, and phases within
the PTEE-BFT framework:

Nodes. The consensus framework consists of three types of
nodes: robot clients, primary nodes, and replica nodes. Robot
clients can send transaction requests at any time, storing them
in the transaction pool. Primary node elections occur in a
Round-Robin manner (Castro and Liskov 1999). When the
primary node is suspected to be faulty, a new primary node is
elected through the Viewchange mechanism. The primary node
receives client requests and broadcasts them to all replica nodes
in a predefined order. After executing the request, each replica
node returns the results to the primary node, which aggregates
and sends the final response to the client. All non-primary
nodes are replica nodes, responsible for executing client
requests as instructed by the primary node. Each replica node
maintains the system's status and operation logs independently,
ensuring proper functionality even if the primary node fails.
Replica nodes provide redundancy and fault tolerance by ex-
ecuting requests and returning results to the primary node.
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FIGURE 1 | The structure includes three distinct processes, facilitating multiple client interactions and transaction consensus simultaneously. In

process @, multiple robot clients concurrently submit transaction consensus requests, referred to as Request packets. The primary node aggregates
transactions from the transaction pool and organizes them sequentially. This operation is managed by the Seal thread, which systematically packages
transactions. The Consensus thread encompasses processes @ and ®, which are executed in parallel. In process @, block generation occurs
concurrently through the simultaneous broadcasting of prepare and commit messages, enhancing the efficiency of the consensus mechanism.
Meanwhile, in process ®, the consensus engine consistently retrieves unexecuted blocks from the block queue, processes them, and performs
pipeline validation of the results. This ensures that blocks are executed correctly and timely. Upon successful validation, the results are disseminated
back to the robot clients via Reply messages. This structured approach allows the PTEE-BFT to efficiently handle multiple transactions and
consensus requests concurrently, optimizing throughput and reducing latency within the network. [Color figure can be viewed at

wileyonlinelibrary.com]

Threads. Consensus on a block involves two primary pro-
cesses: transaction packaging and consensus. These processes
are managed by the Seal and Consensus threads. The Seal
thread retrieves transactions from the transaction pool and
packages them based on the highest block on the node, creating
new blocks. These new blocks are then passed to the Consensus
thread. The Consensus thread receives new blocks, either locally
or through the network, and completes the consensus process
based on the received messages, ultimately writing the new
consensus-approved blocks into the blockchain. Once a block is
added to the blockchain, the transactions it contains are re-
moved from the transaction pool. Since the Seal and Consensus
threads require nonconflicting resources, they operate inde-
pendently and can process in parallel. If the Seal thread takes
time s and the Consensus thread takes time ¢, parallel proces-
sing can save time equal to (n — 1)s after n rounds of
consensus.

Processes. Within the blockchain system, the Consensus is
divided into three consensus processes: client request, batch
block parallel generation, and block pipeline execution. These
processes can execute in parallel, allowing multiple blocks to be
consensused simultaneously. Both batch block generation and
block pipeline execution support parallel consensus on multiple
blocks, thereby enhancing the blockchain's throughput. Firstly,
the client request process sends the transaction request mes-
sages to primary and replica nodes. Then, the batch block
generation process is responsible for sorting transactions
received in the transaction pool and parallel generation of
sorted yet unexecuted blocks. Finally, the block pipeline ex-
ecution process conducts pipeline consensus on the block

execution results and commits blocks that have successfully
reached consensus.

Phases. Each Consensus thread completes its task through four
phases: request, prepare, commit, and reply. The primary node
determines the order of client requests and forwards them to
the replica nodes. All nodes then execute a two-phase (prepare/
commit) protocol to reach an agreement on the order of
requests. Subsequently, each node processes the requests and
sends responses to the respective clients. A client accepts the
result only after receiving at least f + 1 consistent replies. In
this consensus protocol, identifiers are generated by the USIG
service based on TPM, ensuring that each identifier can be
assigned to only one message, and that these identifiers are
monotonic, unique, and ordered. Replica nodes need only verify
the message's signature and the integrity of its content, without
the need to compare the content of the same identifier's mes-
sages received by other nodes. Consequently, PTEE-BFT elim-
inates the **Prepare** phase of the traditional PBFT protocol.
Regarding the number of replicas, faulty nodes can decide not
to send messages or to send corrupted ones but cannot send two
different messages with the same identifier and correct certifi-
cate. Thus, PTEE-BFT requires the participation of only 2f + 1
nodes in the consensus workflow to withstand f Byzantine
nodes.

4 | PTEE-BFT Protocol

This section primarily explains the implementation principles
and specific procedural steps of PTEE-BFT, explaining both the
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normal operational flow of the PTEE-BFT protocol and the view
change process when nodes fail. The PTEE-BFT mechanism
based on USIG converts the tolerance of f Byzantine nodes into
the tolerance of f faulty nodes, thus requiring only 2f + 1 nodes
to participate in the consensus process to withstand attacks
from f Byzantine nodes. At the same time, PTEE-BFT is
reduced from three-phase communication (Pre-prepare/
Prepare/Commit) to two-phase communication (Prepare/Com-
mit). To further improve the performance of PTEE-BFT, we also
introduce a parallel processing mechanism.

41 | Client Request Process

The workflow of client request process is shown in Figure 2. A
robot client initiates an operation, denoted as op, by sending a
message to all servers:

(Request, c, seq, op, sig,). (1)

Each client possesses a unique pair of public and private keys.
The private key is used to sign requests. Here, c represents the
client ID, seq is the request identifier, and sig,. is the signature of
the client on the sent message.

Then, each node stores the latest request seq sent by the client
in a vector Vgq. Nodes discard requests where seq is less than
the request identifier in the latest message, to prevent executing
the same request twice and any requests received while pro-
cessing the previous one. Requests are signed using the client's
private key. Requests with an invalid signature sig . are simply
discarded. As shown in Figure 2, after sending a request, the
client waits for Reply messages with matching results rst; from
f + 1 different nodes:

(Reply, Sj, seq, rst;;), ®)

i~~~ "~ """"TTTToTmoooo [kt !
|« initiate a request op **¥| ! :
:4 ..................................... Lo initiate a request op .-.-pl :
: verify signature verify signature ||
= | and seq and seq i
o | T
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1
4l been processed?) ! cen processed: I :
: ey
1 1 I 1
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! Lo Y eop s ¥a ; i
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P— Sl B ey alsgelelwio ol a0 Rbe = s S e S elolelal Lo g b sl s Bis 5 IS5 ol vo
1 ] 1 .
:4 ..................................... : ..... returnReply : :

1 1 1
:4 ...... return Rep]y ........... : : :
I
z 1 (Collect f+1 identical : : !
:— replies? ) ! ! :
], -
1 1 1 |
e N | ! !
SO ooy ey L ____ ]

FIGURE 2 | The workflow chart of request and reply processes.
[Color figure can be viewed at wileyonlinelibrary.com]

where i represents the block number, and S; represents the
primary and replica node ID.

This ensures that at least one reply is from a benign server. If
the client does not receive enough replies within the interval
read by its local clock, it resends the request. If the request
has already been processed, the nodes resend the cached

reply.

4.2 | Batch Block Parallel Generation Process

During the process, every message uses the USIG based on the
TPM to generate a unique identifier. The core function of USIG
is to generate a unique sequence number for incoming mes-
sages and to create a signature in conjunction with the message
content. This ensures the integrity and verifiability of the
messages. USIG operates within a TPM, safeguarding it from
external attacks and ensuring the monotonicity, uniqueness,
and sequentiality of messages, with each sequence number
corresponding to only one message. The value of the monotone
counter maintained by USIG is given by the block height,
instead of maintaining a separate counter. Let the current block
height of the blockchain be k. Both primary and replica nodes
generate a key pair within a trusted execution environment
(TEE) during system initialization. The private key is securely
stored and used to create a unique identifier within this en-
vironment, inaccessible to any external entities, while the
public keys are publicly available for verification of a unique
identifier.

As shown in Figure 3, PTEE-BFT for the specific operation
process is as follows:

1. In the Seal thread, the primary node packages transactions
from the transaction pool into multiple blocks. In the batch
block parallel generation phase of the Consensus thread,
nodes concurrently consensus the packaged blocks to gen-
erate sorted, unexecuted blocks. The primary node retrieves
several packaged blocks from the transaction pool, denoted
as Blocks = [Block;, Block, ..., Block, ..., Blockgioekrimit ]
and places these blocks in the Prepare message packet, pro-
ducing PreMessages = [ Prepare,, Prepare,, ..., Prepare,, ...,
Preparey;  rimit)- BlockLimit is a parameter that limits the
number of blocks that can be concurrently consensed, en-
suring the stability of the blockchain system. Each Prepare
message packet includes the message type, view information,
primary node's id, the packaged block, and a certificate
generated by the primary node for the Prepare message:

(Prepare, v, S, Block;, UI,), 3)

where UI,, is a unique identifier generated by the USIG.

2. The primary node broadcasts the multiple Prepare mes-
sage packets simultaneously to all other replica nodes.
After receiving a Prepare message packet Prepare;, other
replica nodes use verifyUI to check the correctness of UL.
If the verification is successful, they continue to check the
following:
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Batch Block Parallel Generation Process
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| Repeat steps (2)-(5) for all batched PreMessages (Prepare) to achieve parallel consensus

— Whether the Prepare message packet has already been
received locally.

- v is the current view number and the sender is indeed
the primary node of the current view (view%n).

- The signature of the client in message m is correct;

- The replica node has already accepted the request
Block;_1, where UI, .h = UI,.h — 1. That is, all cor-
responding requests smaller than UI;.h have been
accepted and executed.

- The validity of the message packet index i must be
greater than the current blockchain height h and less
than h + BlockLimit.

. After a replica node successfully verifies a Prepare
message packet, it adds the packet to its local cache
and broadcasts Commit message packet to all other
nodes:

(Commit, v, Srj, Sp, Block;, Ul, UL, 4

where Commit is the message type, v is the current view,
Sr; is the ID of the replica node, Block; is the packaged

FIGURE 3 | The workflow chart of batch block parallel generation process. [Color figure can be viewed at wileyonlinelibrary.com]

block, and U, is the certificate generated by the replica
node for the Commit message.

Both Prepare and Commit messages have unique identi-
fiers UI generated by the createUI function, ensuring that
no two messages share the same identifier. Servers use the
verifyUI function to check the validity of identifiers
received in messages.

. When other nodes receive a Commit message packet

Commit;, they verify its validity. In addition to the five
steps of Prepare message verification, this includes
checking whether the node has received f+ 1 valid
Commit messages for Block;. If a replica node does not
receive a Prepare message from the primary node but
receives a valid Commit message, it also broadcasts the
corresponding Commit message. This is because the
Commit message includes the primary node's certificate
UI,,, proving that the corresponding Prepare message is
problem-free.

. Once the Commit message packet Commit; is verified, the

node adds it to the local cache. When the node collects
f+ 1 Commit message packets, it retrieves the block
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Block; from the preprocessed message packets and com-
mits it to storage.

For all the preprocessed message packets generated in this
stage, the procedure is repeated from steps (2) to (5) to complete
the parallel ordering consensus of BlockLimit blocks. To ensure
the correct sequence of blocks during the consensus process,
each node maintains a vector V,.,, where each element records
the value of the last message's counter processed by each replica
node (including Prepare, Commit, Checkpoint, Viewchange). For
example, Vi, = (Ul .h, Ul .h, Ul,.h, ..., UL, .h), where UI, .h
is the counter value of the last message sent by the primary
node received by the current replica node.

4.3 | Block Pipeline Execution Process

During the block batch parallel generation process, con-
sensus engine generates BlockLimit deterministic blocks
which are placed into the block queue, denoted as
BLQueue = [ Block;, Block; 1, ..., BlocK;  plockLimit]: In the pro-
cess, the consensus engine continuously extracts un-
executed blocks from the block queue for execution, and

conducts a pipeline consensus on the execution results of
these blocks. As shown in Figure 4, the protocol for this
process is as follows:

1. The consensus engine retrieves an unexecuted block, re-
ferred to as Block;, from the block queue and inputs it into
the execution engine. The state resulting from executing
the block is noted as Checkpoint;, with its corresponding
hash denoted as cPHash;.

2. After block execution, nodes generate a Checkpoint mes-
sage packet:

(Checkpoint, Sj, Uljges:, cPHash;, UL), (5)

where Ul is the signature of the most recently executed
request, cPHash; is the current node state's hash value,
and Ul,; is the signature obtained by calling createUI on
this Checkpoint message. This Checkpoint message packet
is then broadcast to all nodes.

3. Other nodes receiving CheckPointMessage; verify the
validity of the signature. If the signature passes validation,
the message packet is placed into local cache.

Block Pipeline Execution Process

Consensus Engine

Execution Engine

Primary and Replica
Nodes

(1)Retrieve Block; from
BLQueue

...................... Send Execute Block; Request

Ieveereeeennnreaeeesnnareeeeeeanraeeesas Return Checkpoint; and cPHash;

eeeee e e et e e e e e e e eaaaaes (2)Broadcast Chéckpoint message

(3) Verify Ul signature and check whether cPHash;
matches the local execution result

If valid, cache it i

(4) When a node collects f+1 valid and consistent
CheckPointMessage;:

! - Confirm that all nodes agree on the execution result
! of Block;; :
i -Commit Checkpoint; to storage, updating the

(5) After Block; is executed, use
Block;’s state as the baseline

Execute Blocki |< ....... i blockchain state;

1
- Perform Garbage Collection (GC), discarding log

i entries with sequence numbers lower than Uljgest

1
1

b e e . 1
1
1

The consensus engine retrieves Block;, and repeats the above process (steps (1)-(4))
for the remaining blocks in the BLQueue in a pipeline manner.

FIGURE 4 |

The workflow chart of block pipeline execution process. [Color figure can be viewed at wileyonlinelibrary.com]
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4. When a node collects f+ 1 Checkpoint message pack-
ets with execution results matching their own and
from distinct consensus nodes, it is considered that all
consensus nodes have reached an agreement on the
block execution result Checkpoint;. The execution result
CheckPoint; is then committed to storage, and the
blockchain state is updated to the latest. At this point,
nodes employ the Garbage Collection (GC) mechanism
based on the checkpoint to discard all log entries with
sequence numbers less than Ulg,y. When a view
change occurs, a new checkpoint is generated, and the
log list is cleared.

5. Once Block; has finished executing, Block;,; can execute
based on the state of Block;, using the hash of Block; as its
parent block hash. This produces a new execution result
Checkpoint; . ,, and the steps above are repeated to reach
consensus on the execution results of the remaining
BlockLimit — 1 blocks in the BLQueue.

44 | View Change Operation

Our protocol significantly limits the malicious actions that the
primary node can perform: it cannot duplicate or arbitrarily
assign higher sequence numbers. However, a malicious primary
node can still prevent consensus operations by either not
assigning sequence numbers to some requests or not assigning
sequence numbers to any requests.

A view change must be executed, and a new primary node
chosen when the primary node fails or acts maliciously. View
changes are triggered by timeouts. When a replica node receives
a request from a client, it starts a timer T, that times out after a
fixed period. The timer stops when the request is accepted. If
the timer expires, the replica node suspects the primary node of
failure and initiates a view change. The workflow of view
change process is shown in Figure 5.

When the timer of a replica node Sr; times out, Sr; sends a
message to all nodes:

(ViewchangeReq, Srj, v, V') (6)

where v is the current view number and v = v + 1 is the new
view number.

When Sr; receives the other f + 1 ViewchangeReq messages, it
transitions to view V' and broadcasts a message
(Viewchange, Srj, V', cPigrest, M, UL;), Where cPlyey is the latest
checkpoint certificate (i.e., the collection of those f+ 1 valid
Checkpoint messages), and M is the set of all messages sent by
the node since the latest checkpoint was generated, including:
Prepare, Commit, Viewchange, and newView messages. At this
point, the node stops accepting messages in view v.

The Viewchange messages utilize unique identifiers UL,
obtained by calling createUI. The goal is to prevent Byzantine
nodes from sending Viewchange messages with different cPgs

View Change Process

Replica Node Sr; J
(Initiating Viewchange)

New Primary S,

Other Nodes ]

1

: (In View V)
Request timed out, no
: response

1
1

Send ViewchangeReq

eeeesentenentintitittittttitttttttittttittntttcnesncnasncnasnsnasnchiiiiiiiiiin Send ViewchangeReq .................

Wher} St receives ft1 Broadcast Viewchange >| verify Viewchange

ViewehangeRed luwssmsessarsemmsmnme -+ Broadcast Viewchange  *| verify Viewchange

: lgosrorsionne forward the Viewchange ............. >
: When S'p receives f+1 :
i Viewchange from different E
| replicas !
i‘ """"" Broadcast newView message e Broadcast newView message **+***** 'i

| verify newView | verify newView |

| After verification, enter the new view V' |

FIGURE 5 |

The workflow chart of view change process. [Color figure can be viewed at wileyonlinelibrary.com]
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and M to different nodes, leading to different decisions on the
last request of the previous view. If Byzantine nodes do this,
benign nodes can still detect them by validating Ul,;. Only the
normal nodes that are consistent with the system state will
consider the (Viewchange, Srj, V', cPes, M, UL;) message.
Normal nodes perform the following checks on ViewChange:

1. CPies actually has f+ 1 valid UI identifiers:

CleeS[ = UII, Ulz, ceey UIf+1. (7)

2. In ULy, the counter value must increase by one:

UlLy.h = Uly_1.h + 1. (8)

- If M is not empty, then counter value in UL;_..h is:
ULj_1.h = max(M). 9)

- If M is empty, the counter value is taken from the latest
checkpoint:

UIvj—l-h = CPlatesl-h~ (10)

3. The counter values in messages M are consecutive:

v m;, miy, € M, m,-+1.h = mi.h + 1. (11)

When the new primary node S, of view v’ receives Viewchange
messages from f + 1 distinct replica nodes, it stores them in a
collection called V;,,, which is the new view certificate. V;,, will
include all requests made after the previous checkpoint,
including those that are only prepared but not yet accepted. To
define the initial state for the new view 1’, the new primary
node uses the information from the cPy, and M fields in the
Viewchange messages to define NV,, which is a collection of
requests that have been prepared/accepted since the
checkpoint:

NV, = rlr.h > cPiest.h, ¥ € M. 12)

To compute NV,, the primary node first selects the most recent
and valid checkpoint certificate received in the Viewchange
messages. Next, it chooses requests from the M collection that
have counter values greater than those in the latest checkpoint
certificate.

After making this calculation, the primary node broadcasts a
message:

(newView, S’, V', Vay, NV, UL). (13)

When a replica node receives a newView message, it verifies
the validity of the new view certificate V;,. All replica nodes
also perform the same calculation as the primary node to
verify that NV, is correctly computed. Replica nodes then
start the set of all requests in the new view v’ that were
accepted in view v, denoted as S,... If a replica node detects

that the counter values between its latest executed request
and the first request in NV, are not consecutive, it initiates a
Commit check with all other nodes to retrieve missing
requests. If these message requests have been deleted by
other nodes due to the garbage collection mechanism, they
use the same State Transfer mechanism as PBFT to directly
transition the state.

5 | Experiments and Discussion
5.1 | Experiment Setup

In practical applications, blockchain consensus mechanisms
significantly influence exit times and the system's ability to
withstand Byzantine faults during collective decision-making
processes. Therefore, the experiments presented in this paper
primarily investigate the efficiency of blockchain consensus,
the impact of hardware performance, and the resilience
against Byzantine nodes. In our scenario, we compared the
consensus efficiency of PTEE-BFT with PBFT and other en-
hanced BFT protocols by integrating the PTEE-BFT protocol
into the FISCO BCOS blockchain (Li et al. 2023) and estab-
lishing a private network. Each participating machine hosted
a single PTEE-BFT node. Field experiments were conducted
using E-Puck 2 robots. At the core of each E-Puck 2 is a
Raspberry Pi Zero 2 microcomputer, enhanced with a Let-
sTrust TPM module (pi3g 2024). This Trusted Platform
Module (TPM) plays a crucial role in securing the data and
operations of the robots by providing hardware-based secu-
rity functions, which are essential in a collaborative en-
vironment where data integrity and security are paramount.
The inclusion of the TPM enables the system to perform
secure multiagent computations and authenticate inter-robot
communications securely.

We evaluated the consensus efficiency of PTEE-BFT relative to
PBFT and its resilience to Byzantine node attacks. The swarm's
objective was to estimate the relative frequency of white tiles in
a1.5 x 0.8 m? “checkerboard” environment, where the floor is
covered with B black and W white tiles, each measuring
10 X 10 cm?, with B +W =400 tiles, as depicted in Figure 6.
Each robot performed obstacle avoidance and random walk
routines on the floor. Depending on the scenario, the positions
of the black and white tiles were either fixed by the experi-
menter or randomly assigned at the start of a run. At the
beginning of each run, the robots’ starting positions were ran-
domly selected from a uniform distribution. To enable the
swarm to aggregate information about the environment, each
robot sampled its local ground sensor and exchanged informa-
tion with other robots within its communication range. The
experiment was conducted in discrete time steps, each corre-
sponding to 1 s.

At each time step, robot i determines if it is above a black or
a white tile via its ground sensor. Each robot operates in
exploration phases. We use the subscript notation i, m for
variables referring to robot i in its mth exploration phase.
The duration of each exploration phase is 45 seconds. To
obtain a sensor reading, robot i in its mth exploration phase
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FIGURE 6 | The testbed physical environment: (a) The black-white tiles arena. (b) The LetsTrust TPM module. (c) The E-puck2 robot equipped

with TPM. [Color figure can be viewed at wileyonlinelibrary.com]

calculates the ratio p, ,, between the number of white tiles
W, m and the total number of tiles W}, + B; , it sensed in this
exploration phase: o, , = Wn/(W + Bym) € [0, 1]. If the
distance between two robots was less than 50 cm, they were
within communication range and could exchange informa-
tion, reflecting real swarm robotics systems that possess
only local communication capabilities. This communication
range resulted in an average degree of connectivity of 2.4,
meaning one robot was, on average, connected to 2.4
other robots, leading to the formation of multiple non-
connected clusters almost constantly. The ratio of black tiles
was set at 0.30.

To rigorously evaluate the system's performance, we designed
multiple experimental scenarios with varying key performance
indicators to assess the following metrics:

Latency (average response time, ART): This metric mea-
sures the duration from when a client issues a request to
when it receives a response.

Throughput: This represents the number of requests pro-
cessed per second by the protocol. We determine the peak
throughput under varying numbers of malicious nodes f,
and examine the associated latency for each BFT protocol,
highlighting the relationship between throughput and
latency.

Exit time: The average time to complete the common
knowledge formation process, i.e. the average end time of
each experiment.

Estimate Error: The average error of the final common es-
timate value with the ground truth value.
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5.2 | How Queries Per Second (QPS) Impacts on
Transactions Per Second (TPS)

In the context of the white-black ratio consensus experiment
involving swarm E-puck robots, QPS and TPS are crucial met-
rics for evaluating the performance of the consensus protocol.
The following provides a detailed explanation of each term in
this specific scenario:

QPS: QPS refers to the rate at which robots within the swarm
submit requests for consensus on the white-black tile ratio. In
this experiment, each robot periodically collects data from its
ground sensors to determine whether it is above a black or a
white tile. This data is then shared with other robots within its
communication range, and a consensus mechanism is used to
aggregate this information and reach a collective decision on
the ratio of white to black tiles. For instance, if the QPS is set to
1000, it means that the entire swarm is collectively making 1000
requests per second to update and agree upon the ratio of white
to black tiles.

TPS: TPS measures the number of consensus transactions that
the system can process in 1s. A transaction, in this context,
refers to a successful update and agreement on the white-black
tile ratio after processing the data shared by the robots. For
example, if the system has a TPS of 500, it means that it can
handle and process 500 consensus TPS. This involves collecting
sensor data from the robots, running the consensus algorithm
(such as PTEE-BFT or PBFT), and updating the collective
decision on the tile ratio.

In the white-black ratio consensus experiment, E-puck robots
are tasked with determining the proportion of white tiles in a
given area by sampling the tiles they encounter. The procedure
can be summarized as follows:

1. Data Collection: Each robot moves around the environ-
ment and uses its ground sensor to identify the color of the
tile it is currently on (black or white).

2. Communication and Query: Robots within communica-
tion range share their sensor data with each other. This
sharing is part of the consensus request, which is mea-
sured by QPS. Higher QPS means more frequent data
sharing and consensus requests.

3. Consensus Process: The shared data is processed through
the consensus algorithm to reach an agreement on the
white-black tile ratio. Each successful agreement con-
stitutes a transaction.

4. Performance Metrics: The efficiency of this process is
evaluated using TPS, which indicates how many of these
consensus agreements can be reached per second. Higher
TPS means the system can handle more consensus
transactions in a given time frame, reflecting better
performance.

As illustrated in Figure 7, the experimental results clearly
demonstrate that both PBFT and PTEE-BFT protocols show a
steady increase in TPS as QPS increases, but their behaviors
differ significantly at higher QPS levels. Specifically, the TPS for

I TPS(PTEE-BFT) —e— Avg Response Time(PBFT)

TPS(PBFT) Avg Response Time(PTEE-BFT)
900
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FIGURE 7 | The latency and throughput performance comparison
of the consensus protocol with and without optimization. [Color figure
can be viewed at wileyonlinelibrary.com]

PBFT stabilizes at around 500 TPS, whereas the PTEE-BFT
protocol achieves significantly higher throughput, peaking at
around 870 TPS. This indicates that PTEE-BFT can handle a
larger volume of consensus transactions under high-demand
scenarios, making it more suitable for real-time applications
with frequent updates.

Furthermore, the ART for both protocols increases as QPS rises.
However, PTEE-BFT consistently maintains a lower ART
compared to PBFT across all QPS levels. For example, at
QPS = 5000, the response time for PBFT exceeds 15,000 ms,
while PTEE-BFT remains below 10,000 ms. This significant
reduction in latency highlights the advantages of PTEE-BFT in
scenarios where timely decision-making is critical, such as real-
time swarm robotics or dynamic sensor networks.

This section explores the impact of transaction request rates
(i.e., QPS) on throughput (i.e., TPS) and latency (ART) using
Raspberry Pi Zero hardware. Initially, we evaluated the latency
and throughput of the proposed PTEE-BFT method under
varying QPS conditions. As illustrated in Figure 7, the prelim-
inary phase of our study was conducted within the Raspberry Pi
Zero, where all experimental nodes were configured within the
TPM, ensuring a controlled and secure testing framework. The
results demonstrated a direct correlation between transaction
request rates (QPS) and throughput (TPS), with the throughput
peaking at a QPS of 1500. Before optimizing the PBFT protocol,
the system achieved a TPS of approximately 1000 within the
TPM. However, post-optimization, the throughput significantly
increased to around 1500 TPS, marking a notable 30%
improvement in performance at the maximum QPS. Further-
more, latency measurements generally increased with rising
QPS. Crucially, the optimized protocol consistently exhibited
lower latency compared to its pre-optimized counterpart under
equivalent QPS conditions, particularly at higher QPS levels.
These findings underscore the practical applicability of the
PTEE-BFT protocol in large-scale systems requiring high
throughput and low latency, such as crowdsourced robotic
coordination, where frequent data exchanges and rapid
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consensus updates are essential for achieving task synchroni-
zation and operational efficiency.

5.3 | Real-World Black-White Ratio Estimation
Error

Figure 8 presents the estimate error of the consensus protocol
over 1000 rounds, comparing the performance of the optimized
PTEE-BFT protocol with the traditional PBFT protocol. The
extended results further validate the superior performance of
PTEE-BFT, particularly in achieving faster convergence and
lower steady-state errors compared to PBFT.

Initially, both protocols start with a high estimate error, with
PBFT exhibiting an error rate above 0.3 and PTEE-BFT slightly
below 0.3. As the rounds progress, the estimated error for both
protocols declines. However, the rate of decrease clearly dif-
ferentiates the two protocols:

By around 200 rounds, the estimation error for PTEE-BFT
decreases to approximately 0.05, while PBFT still remains
around 0.08, indicating a faster convergence rate for PTEE-BFT.
Between 200 and 400 rounds, the gap between the two protocols
widens further. PTEE-BFT consistently reduces the error more
rapidly, reaching approximately 0.02 by 400 rounds, whereas
PBFT maintains a higher error of about 0.03. By around 600
rounds, the estimation error for both protocols stabilizes.
However, PTEE-BFT achieves a lower steady-state error close to
0.01, while PBFT stabilizes at a slightly higher value near 0.02.
The results demonstrate that the PTEE-BFT protocol not only
accelerates the convergence process but also ensures a lower
final estimation error, which is critical for applications requir-
ing precise and reliable consensus.

Compared to PBFT, PTEE-BFT enhances consensus efficiency,
allowing the system to achieve decision consistency among
nodes more rapidly. This improvement can be attributed to the
integration of TEEs, which enhance the reliability of data pro-
cessing, and the parallel execution capabilities of PTEE-BFT,
which significantly reduce communication overhead.
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FIGURE 8 | Estimate error of consensus protocol with and without

optimization. [Color figure can be viewed at wileyonlinelibrary.com]

In real-world scenarios, such as crowdsourced robotic systems
or distributed sensor networks, the ability to achieve faster
convergence and lower error rates ensures higher operational
efficiency and accuracy. The experimental results confirm that
PTEE-BFT is highly suitable, efficient, and scalable for systems
with stringent real-time and accuracy requirements.

5.4 | How the Number of Byzantine Robots
Impacts Exit Time

In our experiments, we employed the Linear Consensus Pro-
tocol (LCP) (Beal 2016) for consensus decision-making. As
depicted in Figure 9a, our actual experimental outcomes indi-
cate that the proposed PTEE-BFT protocol significantly reduces
exit time compared to the PBFT protocol. The results demon-
strate that PTEE-BFT outperforms PBFT in both throughput
and response time. Consequently, the system can process more
transaction data within a unit of time, substantially shortening
overall response time and accelerating the centralized decision-
making process. However, as the number of nodes continues to
increase, the exit time will eventually reach a minimum and
then start to rise again. This rebound effect is due to the
increased communication costs associated with having a larger
number of nodes.

Specifically, as shown in Figure 9a, for a system size of three
nodes, the exit time for PBFT is approximately 528 ms, while
PTEE-BFT reduces it to around 354 ms, representing a
substantial improvement. As the number of nodes increases
to 15, PTEE-BFT maintains an exit time below 240 ms,
whereas PBFT exit time remains significantly higher at
around 336 ms. This result highlights the superior scal-
ability of PTEE-BFT in larger systems, where communica-
tion complexity tends to increase.

In this experiment, we examine the impact of the number of
Byzantine nodes on exit time and estimate error. Considering
the system's fault tolerance limitations, for a system configu-
ration set to 15 nodes, a maximum of seven Byzantine nodes are
allowed. By simulating Byzantine behavior—namely, by halting
the operations of normal nodes—the experiment aims to assess
the impact of varying numbers of Byzantine nodes on system
resilience. The experimental results are shown in Figure 9b.
When the system is resilient to Byzantine nodes, the final es-
timate error remains virtually unaffected. For instance, as
shown in Figure 9b, when the number of Byzantine nodes
increases from 0 to 7, the estimate error of PTEE-BFT remains
stable at approximately 0.025, while PBFT exhibits a slight
increase, particularly when exceeding four Byzantine nodes.
This demonstrates that PTEE-BFT can sustain accurate con-
sensus results even under adverse conditions.

However, the exit time is directly affected by the increasing
number of Byzantine nodes. For PTEE-BFT, the exit time
gradually rises from around 240 ms (0 Byzantine nodes) to 521
ms (7 Byzantine nodes), whereas PBFT experiences a more
significant increase, rising from approximately 336 ms to over
600 ms. This result illustrates that PTEE-BFT effectively miti-
gates the performance degradation caused by Byzantine nodes,
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nodes; (b) number of Byzantine nodes. [Color figure can be viewed at wileyonlinelibrary.com]

ensuring timely consensus decisions even in fault-prone
environments.

Influence of Byzantine Nodes: The presence of Byzantine nodes
introduces increased uncertainty and complexity within the
system, particularly when these nodes occupy pivotal roles such
as the primary node. The system is compelled to engage in
additional processes to detect and mitigate malicious behaviors,
ensuring uninterrupted network operation. These supplemen-
tary activities consume system resources and diminish proces-
sing efficiency.

Performance Detriments Due to View Changes: In Byzantine
fault-tolerant systems, the view change mechanism is critical
for sustaining system operability when the primary node is
compromised by Byzantine failures. This mechanism necessi-
tates comprehensive coordination among all nodes, suspending
ongoing transactions until a new primary node is elected and
recognized by the network. Although essential for maintaining
continuity, this process significantly impedes system perform-
ance during the transition.

Despite these challenges, compared to the PBFT protocol, our
protocol exhibits superior robustness in maintaining system li-
veness and security with up to seven Byzantine nodes. This
improvement is particularly critical in real-world applications
such as autonomous robotic swarms and distributed IoT net-
works, where the presence of malicious or faulty nodes is
inevitable. The ability of PTEE-BFT to maintain low estimate
error and reasonable exit time under such conditions ensures
higher operational reliability and fault tolerance. As illustrated
in Figure 9b, while PBFT can only accommodate a maximum of
four Byzantine nodes in a 15-node setup, increasing beyond this
threshold disrupts consensus. Moreover, the communication
overhead during view changes in PBFT is greater than in our
PTEE-BFT protocol, resulting in prolonged response times and
diminished throughput. Consequently, our approach not only
reduces node deployment costs but also enhances scalability
and fault tolerance, offering substantial improvements over
traditional PBFT systems.

6 | Conclusion

In this paper, we proposed a novel PTEE-BFT to enhance the
efficiency and scalability of consensus mechanisms in swarm
robotics. Our approach reduces communication phases and le-
verages multi-level parallel processing, significantly improving
throughput and reducing latency. Experimental results dem-
onstrate that PTEE-BFT outperforms traditional PBFT variants
in performance, scalability, and fault tolerance, making it well-
suited for real-time applications in swarm robotics. Building on
this study, future work will focus on optimizing consensus
decision-making methods, further enhancing the protocol's
efficiency and adaptability to diverse and complex operational
scenarios in swarm robotics.
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