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Abstract
Cooperative localization plays a significant role in various applications, such as emergency rescue and navigation path plan-
ning. The advent of swarm intelligence has opened doors to agent-based cooperative localization. However, sharing data 
between agents during the cooperative localization process can compromise privacy. One of the key challenges is to develop a 
cooperative localization model that safeguards the data privacy of agents. To tackle this issue, we initially adopt a state-space 
model to describe the movement of an agent for single-agent dynamic localization. This model effectively handles noise and 
improves accuracy. For the problem of multi-agent cooperative localization, we employ the federated learning framework 
coupled with the alternating direction multiplier method. Within this framework, the central node aggregates local models to 
create a global cooperative localization model, eliminating the need for data sharing and ensuring privacy protection. When 
compared to the centralized model, the federated model achieves satisfactory localization accuracy while demonstrating 
the robustness and generalization performance across different data distributions. Furthermore, when confronted with new 
scenarios, the federated model exhibits excellent transfer performance.

Keywords  Cooperative localization · Federated learning · Multi-agent · Gaussian process · State-space model

1  Introduction

Recently, research on location-based services has gained 
popularity and is becoming increasingly integrated into our 
daily lives. Localization services are expanding, encompass-
ing applications such as positioning navigation and route 
planning. Consequently, there is a growing demand for 
higher accuracy in localization services. The Global Posi-
tioning System (GPS) has been widely employed for outdoor 
localization and navigation, offering a cost-effective solu-
tion with high precision and real-time performance. How-
ever, in indoor scenarios, the signal strength of satellites 
is easily obstructed, leading to limitations in localization 

performance. In contrast, wireless localization technolo-
gies based on time difference of arrival (TDOA) and time of 
arrival (TOA) [1, 2] are widely adopted for indoor scenarios. 
These technologies typically require pre-set base stations 
and utilize methods such as ultra-wideband (UWB), infra-
red, ZigBee, and others [3]. Localization accuracy can be 
affected in the presence of non-line-of-sight (NLOS) inter-
ference, where the direct propagation path between nodes 
is obstructed [4]. On the other hand, localization technolo-
gies relying on inertial systems avoid NLOS interference by 
integrating information obtained from the system. However, 
the inertial system itself introduces deviations in the acceler-
ometer and gyroscope, leading to cumulative system errors 
over time [5].

As mentioned earlier, achieving the desired localization 
accuracy based solely on an agent’s observation data can be 
challenging. In the realm of cooperative localization net-
works, one of the main challenges is constructing a network 
where multiple agents work together to overcome perception 
limitations, fully utilize heterogeneous data, and enhance 
the overall performance of the localization system. In tra-
ditional cooperative localization, the target node obtains 
distance information from reference nodes and other target 
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nodes, and its position is determined by utilizing the aggre-
gated distance information from these sources. Cooperative 
localization enables rapid and efficient localization of target 
nodes in scenarios with poor signal strength between some 
nodes [6]. However, conventional cooperative localization 
methods require sharing observed data between different 
agents. Notably, these sensor data inherently contain distinct 
characteristics of the respective agents or environmental fea-
tures. Frequent transmission and communication may result 
in sensitive privacy leakage [7].

In recent years, Federated Learning (FL) [7], a distrib-
uted machine learning framework, has garnered significant 
attention as a model training method that prioritizes privacy 
protection. In the FL approach, participants do not need to 
share their data during training. Instead, they perform local 
iterations and then upload the updated information (e.g., gra-
dients) of their local models to a central server [8–10]. The 
central server aggregates all the received gradients and per-
form back propagation to obtain the latest parameters. Then 
the server sends back the parameters to each participant for 
them to conduct local training. Moreover, in the settings of 
[11, 12], each client uses stochastic gradient descent (SGD) 
to optimize the current local model and then uploads the 
parameters to the server instead. The server performs the 
federated averaging algorithm (FedAvg) to obtain the latest 
parameters. This entire procedure ensures that data remains 
confined within local domains, and the transmission pro-
cess only involves model parameters, effectively safeguard-
ing privacy. By leveraging FL, localization methods based 
on received signal strength (RSS) fingerprints [12, 13] can 
achieve satisfactory localization accuracy while preserving 
the privacy of local data. Deep neural networks (DNNs) are 
commonly employed in these federated localization applica-
tions as the preferred choice for local models. To enhance 
the performance of deep models, appropriately increasing 
the number of hidden layers is necessary. However, as the 
number of network layers increases, the parameter size 
expands significantly, posing considerable communication 
challenges between the local model and the central server.

To address the aforementioned problems, we propose a 
multi-agent cooperative localization method based on FL. 
Our main contributions can be summarized as follows: 

(1)	 We propose a Gaussian process-based method to 
address the challenge of dynamic localization in agent 
movement. This method handles the state-space by lev-
eraging the temporal information in the dynamic net-
work and effectively considering the uncertainty caused 
by noisy data during agent movement. As a result, it 
achieves dynamic tracking and localization.

(2)	 We introduce the alternating direction multiplier 
method (ADMM) to achieve the federated fusion of 
multiple local models with a small upload parameter 

size, effectively alleviating the communication burden. 
While ensuring the protection of local data privacy, 
our approach maintains satisfactory localization perfor-
mance compared to centralized learning. Furthermore, 
it exhibits robustness to heterogeneous data, reflecting 
the generalization capabilities of the federated learning 
model.

The structure of this article is organized as follows. Sec-
tion 2 briefly reviews the related work, and Sect. 3 describes 
the state-space model and the FL framework. Section 4 
presents the details of our method, and the corresponding 
experiment is conducted in Sect. 5. Finally, we conclude 
the paper in Sect. 6.

2 � Related Work

Existing localization methods can be broadly categorized 
into two groups: learning-based methods and optimiza-
tion-based methods. Xie et al. [14] introduced an indoor 
localization method that combines random forest and deep 
learning. This approach leverages deep learning to train the 
channel propagation model during the offline phase and ena-
bles online determination of the agents’ orientation. On the 
other hand, Yan et al. [15] proposed a localization method 
based on graph neural networks (GNNs), which effectively 
addresses computational challenges in large-scale networks. 
This method guarantees localization accuracy and model 
stability, enabling static localization of large-scale agents. 
However, in cooperative localization networks, GNNs 
often struggle to effectively utilize temporal information in 
dynamic networks due to the inherent dynamism of agents. 
Generally, sensor data in cooperative agent networks are 
affected by noise and exhibit some uncertainties. Regarding 
interpretability, deep learning methods are less proficient 
in handling uncertainties than optimization-based methods. 
The main optimization-based methods include great likeli-
hood estimation [16, 17], Gaussian process (GP) [18, 19], 
Kalman filter [19, 20], Bayesian message passing [6, 21], 
and others.

In cooperative localization networks [6, 21–23], an agent 
relies not only on its own observation data but also gathers 
interaction information with other agents, leading to many 
compelling benefits, including the ability to extend position 
determination capabilities without ambiguity and enhance 
estimation accuracy performance. Sharma et al. [20] propose 
a cooperative approach for navigating Miniature Air Vehi-
cles (MAVs) in scenarios where GPS signals are unavail-
able. Each MAV estimates the position, pose, and velocity of 
all MAVs within its sensor range, including itself. The fused 
measurements are then processed using an Extended Kalman 
Filter (EKF) to realize navigation state estimation. Jin et al 
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[21] proposed a Bayesian framework to handle the problem 
of RSS-based cooperative localization with unknown path 
loss exponent. This probabilistic inference is solved using 
message passing algorithm, which performs well in dense 
networks and low-to-medium noise scenarios. Wielandner 
et al. [24] present a factor-graph-based cooperative locali-
zation through RSS. This is accomplished by employing a 
parametric antenna pattern to model directivity and concur-
rently estimating the positions and orientations of the agents.

However, in traditional cooperative localization, the sen-
sor data measured by the agent typically contains its own 
characteristics or environmental scene features, which intro-
duces privacy concerns. With increasing emphasis on user 
privacy and data security, the traditional approach of using 
interaction information between agents in cooperative locali-
zation can no longer meet the contemporary requirements 
for privacy protection. To address this issue, federated learn-
ing (FL) [7], a distributed learning framework, eliminates 
the need to share raw data. Each participant computes local 
model update information (e.g., gradients) based on their 
local private data. In various FL scenarios, participants may 
send different types of information. Some send the gradients 
for the server-side update [8–10], while others perform local 
gradient descent and send updated local parameters to the 
server for aggregation [11, 12]. The updated global model 
is then distributed back to all participants for the next round 
of training. This iterative process continues until the model 
converges. Importantly, since the model update information 
usually contains less privacy-sensitive data, the original data 
remains confined within the local area, effectively preventing 
privacy data leakage.

FL has been applied in various fields, including medical 
image analysis [25], natural language processing [26], rec-
ommendation systems [27], and localization applications. 
For example, Ciftler et al. [13] utilized FL to implement pri-
vacy-preserving indoor localization. In this approach, users 
construct local models using beacon RSS measurements 
with location labels. The central server aggregates local 
updates to construct a global multi-layer perceptron (MLP), 
achieving accurate localization estimates while preserving 
privacy. Kong et al. [10] introduce a Federated Learning-
based Vehicle Cooperative Positioning (FedVCP) system 
that utilizes the capabilities of the social Internet of Things 
(IoT) and Collaborative Edge Computing (CEC). It employs 
the MLP for regional positioning error prediction and aims 
to deliver accurate positioning corrections while preserving 
user privacy. Another work by Liu et al. [28] implemented 
federated localization for WiFi networks. Mobile devices 
construct local fingerprinting to train a DNN model, fol-
lowed by a deep self-encoder to eliminate noise. The central 
server aggregates local weights to generate a generic model 
that combines high security and localization accuracy. In 
both cases, the updated information is closely related to the 

local model. However, the parameter size of the deep model 
poses a considerable burden on communication.

Liu et al. [29] proposed lifelong federated reinforcement 
learning (RL) for cloud robot navigation systems, where 
private models are fused into a global shared model in the 
cloud. The experiments demonstrate that FL can fuse prior 
knowledge and greatly improve the efficiency of robot navi-
gation based on RL, enabling the robot to adapt rapidly to 
new environments. Furthermore, FL can be applied in RL 
agents to learn optimal control policies on IoT devices of the 
same type but with slightly different dynamic performances 
[30]. The experimental results show that this approach effec-
tively facilitates the learning process of multiple non-identi-
cal IoT devices. Evidently, FL incorporates prior knowledge 
from participants during the local model aggregation pro-
cess, improving the generalization performance of the global 
model and enabling quick adaptation to new scenarios.

To summarize, we propose a methodology that models 
the agent’s state-space and utilizes Gaussian Process (GP) 
to handle uncertainty caused by noise, enabling the tracking 
of a single agent. Additionally, we achieve federated fusion 
of multiple agents using Alternating Direction Multiplier 
Method (ADMM) to reduce communication burden. Com-
pared to centralized learning, the federated model maintains 
satisfactory localization accuracy while preserving data 
privacy. The experiments also demonstrate robustness and 
generalization performance when dealing with different data 
distributions.

3 � Problem Definition

3.1 � Dynamic Model

The agent’s motion comprises a series of temporal informa-
tion, making the state-space model well-suited for capturing 
its dynamics. In general, the state-space model is defined as:

where xt ∈ ℝ
Dx represents the latent state, yt ∈ ℝ

Dy 
denotes the system output, ut ∈ ℝ

Du represents the con-
trol input, f ∶ ℝ

Dx ×ℝ
Du → ℝ

Dx is the transition function, 
g ∶ ℝ

Dx → ℝ
Dy is the measurement output function, and qt 

and rt represent the transition noise and measurement noise, 
respectively. Considering that noise has a greater impact 
during the agent’s motion compared to statistical localiza-
tion, we achieve dynamic localization by employing Gauss-
ian Process (GP) regression to effectively handle the noise. 
Furthermore, GP has a smaller parameter size and simpler 
model structure compared to a neural network [31]. Similar 
to the choice of activation function in neural networks, the 

(1)
xt+1 = f (xt, ut) + qt,

yt = g(xt) + rt,
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kernel function in GP plays a crucial role in determining the 
model’s expressiveness, such as periodicity and smoothness. 
In the following sections, we utilize the squared exponential 
(SE) kernel:

where M = diag(l2) , with l representing the lengthscale, and 
�2
f
 denoting the signal variance. The hyperparameters of the 

squared exponential (SE) kernel are expressed as 
�h = {�f , l} . In general, the transition function f and the 
measurement output function g are modeled using Gaussian 
Process (GP) with a mean function m(⋅) and a kernel func-
tion k(⋅, ⋅).

The generative Gaussian process state-space model 
(GPSSM) can be described as follows:

with the parameter collections �f , �g, Q, R , where �f  and 
�g are kernel parameters of the Gaussian process, and Q 
and R are the covariance matrices of the transition noise 
and measurement noise. A graphical model of a GPSSM is 
shown in Fig. 1.

3.2 � Federated Learning

McMahan et al. [7] proposed the federated averaging algo-
rithm (FedAvg) based on gradient descent, which is widely 
applicable to federated learning (FL) systems. In this algo-
rithm, the central server possesses the initial FL model and 
aggregates the local model updates that do not involve pri-
vacy. The central server then sends the aggregated updated 
parameters to all participants, who perform local training 
based on these updated parameters and iteratively upload 

(2)k(x, x�) = �2
f
exp

(
−

1

2
(x − x�)TM−1(x − x�)

)
,

(3)

f (x, u) ∼ GP
(
mf (x, u), kf

(
(x, u), (x�, u�)

))
,

g(x) ∼ GP
(
mg(x), kg(x, x

�)
)
,

xt+1|f t+1 ∼ N(xt+1|f t+1, Q), where f t+1 ≜ f (xt, ut),

yt|gt ∼ N(yt|gt, R), where gt ≜ g(xt),

their results until the final model converges. The train-
ing architecture of the FL model is displayed in Fig. 2. 
FedAvg is particularly suitable for parameter aggregation 
in neural networks, while the alternating direction multi-
plier method (ADMM) is more appropriate for Gaussian 
process (GP) regression, providing an effective balance 
between computational and communication efficiency.

We consider the general GP model y = f (x) + � , where 
x ∈ ℝ

d , y ∈ ℝ , and � is Gaussian noise with zero mean and 
variance �2

e
 . In the existing distributed GP model based 

on the product-of-experts (PoE) [32], the log-marginal 
likelihood function associated with the overall dataset 
D = {X, y} can be approximated by the product of the log-
marginal likelihoods corresponding to K non-overlapping 
and equally-sized subsets D(k) = {X(k), y(k)} , as follows:

where each participant in federated learning (FL) owns the 
subset Dk and shares the global hyperparameters � . The 
product-of-experts (PoE) method estimates the covariance 
matrix of the complete dataset by using a block-diagonal 
matrix with equivalent dimensions.

To better align with practical situations, local hyper-
parameters �k can be introduced for each local dataset 
D(k) = {X(k), y(k)} . Therefore, the local loss function dur-
ing the distributed optimization of GP hyperparameters 
can be written as:

(4)log p(y|X;�) ≈
K∑

k=1

log p(y(k)|X(k);�),

(5)Lk(�k) = yT
(k)
Ck(�k)

−1y(k) + log|Ck(�k)|,

Fig. 1   Graphic model of GPSSM. The gray nodes denote the control 
input and the measurement output while the white nodes show the 
latent variables Fig. 2   An example of the FL training architecture
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where C
k
(�

k
) = K(X(k), X(k); �k) + �2

e
I , K(⋅, ⋅) is the kernel 

matrix. The global loss is given by

FL training is performed to find the optimal parameters that 
minimize the global loss function: �∗

g
= argmin

�
Lg(�).

4 � Cooperative Localization based 
on Federated Learning

In this section, we first describe the GPSSM-based algo-
rithm for a single agent. Then, we introduce the alternat-
ing direction multiplier method to aggregate multiple local 
models based on federated learning, enabling cooperative 
localization.

4.1 � Variational Inference for Localization of a Single 
Agent

Commonly, to address the unobserved latent variable of 
the transition function f and reduce computational costs, 
we introduce M inducing inputs z = [z1, z2, ..., zM] with cor-
responding auxiliary inducing outputs v = [v1, v2, ..., vM] . 
Consequently, the GP distribution is estimated by p(f ∗|x∗, f , 
X) ≈ p(f ∗|x∗, v, z) with the sparse GP prior p(v) . The latent 
state sequence and the output sequence are denoted by 
y1∶T = [y1, y2, ..., yT ] and x1∶T = [x1, x2, ..., xT ] , respectively. 
Then, the output of the transition function can be represented 
by f t+1 = f (x̂t) , where x̂t = (xt, ut) . Furthermore, independ-
ent GP priors are applied for each latent state dimension d 
given auxiliary points zd and vd , using mean-field approxi-
mations. This results in p(v) ≈

∏Dx

d=1
N(vd�0,K(z, z)) . The 

joint distribution of GPSSM in the dynamics sequence is 
given by:

where p(f t�x̂t−1, v) =
∏Dx

d=1
p(f t,d�x̂t−1, vd).

To simplify the implementation, we model the output 
function g as g(xt) = C xt , where C = [I, 0] ∈ ℝ

Dy×Dx is used 
to select the first Dy elements of the latent state. Thus, the 
output model is defined as:

The transition process is modeled as:

(6)Lg(�) =

K∑

k=1

Lk(�k).

(7)

p(y1∶T , x1∶T , f 2∶T , v) =

T∏

t=1

p(yt|xt)×

[ T∏

t=2

p(xt|f t)p(f t|x̂t−1, v)
]
p(x1)p(v),

(8)p(yt|xt) = N(yt|g(xt), diag(�2
y,1
, �2

y,2
, ..., �2

y,Dy
)).

where the unknown distribution of the initial latent state 
p(x1) is typically estimated.

Due to the inherent nonlinearity of the GP dynamics 
model in the latent state, computing the log-likelihood or 
posterior based on the joint distribution in Eq. (7) is often 
challenging. However, the Evidence Lower Bound (ELBO) 
of the log-marginal likelihood log p(y1∶T ) can provide an 
estimate of the posterior distribution. Specifically, a vari-
ational distribution q(x1∶T , f 2∶T , v) is introduced to approx-
imate the true posterior p(x1∶T , f 2∶T , v|y1∶T ) . By applying 
Bayes’ theorem, the log-marginal likelihood log p(y1∶T ) can 
be expressed as:

By taking the expectation with respect to the distribution 
q(x1∶T , f 2∶T , v) on both sides of Eq. (10), the first term is 
transformed into the Evidence Lower Bound (ELBO), 
defined as:

The second term in Eq. (12) represents the KL-divergence 
between the variational distribution q(x1∶T , f 2∶T , v) and the 
true posterior p(x1∶T , f 2∶T , v|y1∶T ) , which can be expressed 
as:

Approximating the true posterior p(x1∶T , f 2∶T , v|y1∶T ) with 
the variational distribution q(x1∶T , f 2∶T , v) is equivalent to 
minimizing Eq. (12). This process can also be interpreted as 
maximizing Eq. (11).

Now, let us consider the factorization of q(x1∶T , f 2∶T , v) . 
We utilize an explicit representation [33] of the variational 
distribution, which allows for independent GP predictions 
given explicit inducing points. Following the mean-field 
theory, each latent state dimension d with diagonal vari-
ance Σd and the inducing output distribution are denoted as 
q(v) =

∏Dx

d=1
N(vd��d,Σd) . By marginalizing out the induc-

ing outputs, we obtain the posterior distribution of GP 
prediction for each dimension of the latent state xt+1 , with 
mean and variance given by:

(9)p(xt|f t) = N(xt|f t, diag(�2
x,1
, �2

x,2
, ..., �2

x,Dx
)),

(10)
log p(y1∶T ) = log

p(y1∶T , x1∶T , f 2∶T , v)

q(x1∶T , f 2∶T , v)

− log
p(x1∶T , f 2∶T , v|y1∶T )
q(x1∶T , f 2∶T , v)

.

(11)�q(x1∶T , f 2∶T , v)

[
log

p(y1∶T , x1∶T , f 2∶T , v)

q(x1∶T , f 2∶T , v)

]
≜ ELBO.

(12)
− �q(x1∶T , f 2∶T , v)

[
log

p(x1∶T , f 2∶T , v|y1∶T )
q(x1∶T , f 2∶T , v)

]

=KL
(
q(x1∶T , f 2∶T , v)||p(x1∶T , f 2∶T , v|y1∶T )

)
.

(13)𝜇d(x̂t) = m(x̂t) + 𝛼(x̂t)(𝜇d − m(z)),
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with 𝛼(x̂t) = k(x̂t, z)K(z, z)
−1 . Furthermore, variational distri-

bution can be approximated by factorization [34]:

with q(x1) = N(x1|�x1
,Σx1

) , q(vd) = N(vd|�d,Σd).
The parameters of the GPSSM model include the varia-

tional distribution parameters for the initial state and induc-
ing pseudo points, the noise parameters for the state transi-
tion and observed output, and the kernel function parameters. 
We  c a n  r e p r e s e n t  t h e s e  p a r a m e t e r s  a s 
�GPSSM = {�x1

, Σx1
;�1∶Dx

, Σ1∶Dx
, z;�2

x,1∶Dx
, �2

y,1∶Dy
;�h} . It is 

worth noting that in the GPSSM, the number of parameters 
only grows based on the latent dimensionality, regardless of 
the time series.

By substituting Eqs. (7) and (15) into (11), we obtain:

The first term represents the expectation of the log-likeli-
hood of the observed output yt based on the variational dis-
tribution q(xt) of the latent states and the observed output 
model. It quantifies how well the latent state model explains 
the observed output of the system. The second term involves 
the regularization of the pseudo output distribution to penal-
ize the deviation between the variational distribution and the 
GP prior. It helps to reduce the discrepancy between the two 
distributions. The last term corresponds to the regularization 
of the initial state distribution.

During the maximization of ELBO described in Eq. (16) 
with respect to �GPSSM , the computation of the last two terms 
is relatively straightforward. However, the first term requires 
taking the expectation with respect to the latent state distri-
bution q(x). Since the variational approximation Eq. (15) 
involves the nonlinear dynamics of the latent state, obtaining 
an analytical form for q(x) is challenging. To overcome this 
issue, the Markov structure of the latent states and sparse 
GP can be utilized to approximate the expectation through 
sampling. Specifically, given the distribution of the previous 
state q(xt−1) and an explicit representation of the inducing 
points, the marginal distribution q(xt) is conditionally inde-
pendent of past time steps. Therefore, samples x̃t ∼ q(xt) can 

(14)
𝜎2
d
(x̂t,x̂t) = k(x̂t, x̂t)

− 𝛼(x̂t)(K(z, z) − Σd)𝛼(x̂t)
T

(15)

q(x1∶T ,f 2∶T , v) = q(x1)

T∏

t=2

p(xt|f t)×

[ T∏

t=2

Dx∏

d=1

p(f t,d|x̂t−1, vd)q(vd)
]
,

(16)

ELBO =

T∑

t=1

�q(xt)
[log p(yt|xt)] −

Dx∑

d=1

KL
(
q(vd)||p(vd;z)

)
− KL

(
q(x1)||p(x1)

)
.

be recursively generated by sampling from the sparse GP 
posterior in Eqs. (13) and (14) for t = 1, 2, ..., T . Each dimen-
sion of the latent state is given by

where x̂t = (x̃t, ut) , x̃1 ∼ q(x1) , and � ∼ N(0, 1) is the resam-
pling parameters used for back-propagation of the gradient. 
Afterward, an unbiased estimator of the first term in ELBO 
(16) is given by

where N is the number of state samples.
The optimization of parameters is accomplished through 

back-propagation during the maximization of ELBO 
(Eq. 16). The complete algorithm for single-agent dynamic 
localization is outlined in Algorithm 1. Once the model has 
been optimized by maximizing ELBO (Eq. 16), location pre-
dictions can be obtained using a new input sequence u1∶T and 
an initial latent state x1 . 

Algorithm 1 Gaussian process state-space model (GPSSM)
1. Input: u1∶T ← Control Input; y1∶T ← Ground Truth
2. Output: �∗

GPSSM
← Optimal Model Parameters

3. Initialization Parameters: �GPSSM =

{�x1
,Σx1

;�1∶Dx
,Σ1∶Dx

, z;�2

x,1∶Dx
, �2

y,1∶Dy
;�h}

4. FOR � = 1 ∶ max iteration

5.    FOR t = 1 ∶ T

6.       x̃t ∼ q(xt) ← state samples

7.       �q(xt)
[log p(yt�xt)] ≈

1

N

∑N

i=1
log p(yt�x̃

(i)
t )

8.       FOR d = 1 ∶ Dx

9.          x̃t+1,d = 𝜇d(x̂t)+

               
𝜖

√
𝜎2
d
(x̂t, x̂t) + 𝜎2

x,d
←

 state transition
10.     ENDFOR
11.  ENDFOR

12.  calculate 
∑Dx

d=1
KL

�
q(vd)��p(vd;z)

�

13.  calculate KL
(
q(x1)||p(x1)

)

14.  max ELBO (16) based on gradient
15.ENDFOR

4.2 � Multi‑agent Cooperative Localization

In the state-space model (Eq. 1), the latent state x provides 
a better reflection of the agent’s motion. Therefore, infer-
ring the latent state x is more meaningful than the observed 
output y, and realistic transitions of the latent state are 
desired. The model parameters of the GPSSM used for 
dynamic localization of a single agent can be categorized 
as inducing points, noise parameters during state transition 

(17)x̃t+1,d = 𝜇d(x̂t) + 𝜖

√
𝜎2
d
(x̂t, x̂t) + 𝜎2

x,d
,

(18)�q(xt)
[log p(yt|xt)] ≈

1

N

N∑

i=1

log p(yt|x̃
(i)
t ),
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and observation output, and hyperparameters in the GP ker-
nel. In this study, the inducing points and noise parameters 
remain as local parameters for each agent without fusion. 
Only the kernel parameters are optimized through federated 
fusion. The overall process is illustrated in Fig. 3.

Once the local model has been trained, the state sequence 
prediction x̄1∶T is obtained from the local training data. To 
protect data privacy, only a portion of the model parameters 
are transmitted to the server during the fusion process based 
on the prediction series, without aggregating the original 
data. The fused kernel parameters are expected to generalize 
over multiple local data. Based on the prediction of latent 
states, we consider the objective transition model:

where x̄∗
t
= (x̄t, ut) and t = 1, 2, ..., T − 1 . To simplify the cal-

culation, we assume that each state dimension is mutually 
independent according to the mean-field theory, and each 
dimension experiences the same Gaussian noise disturbance 
� ∼ N(0, �2) . Subsequently, the negative log-likelihood 
function for the prior distribution of the output in Eq. (19) 
is obtained as:

where C(𝜃h) = K(x̄∗
1∶T−1

, x̄∗
1∶T−1

; 𝜃h) + 𝜎2I , tr(⋅) denotes the 
trace of a matrix, and | ⋅ | represents the determinant of a 
matrix.

Equation (20) can be considered as a local loss in the dis-
tributed parameter fusion process. An optimization scheme for 
Gaussian processes based on the classical Alternating Direc-
tion Method of Multipliers (ADMM) [35] enables participants 
to train local models independently, with significantly reduced 

(19)x̄t+1 = f (x̄∗
t
) + qt,

(20)
L(𝜃h) =

Dx∑

d=1

x̄T
2∶T ,d

C−1(𝜃h)x̄2∶T ,d + log det |C(𝜃h)|

= tr
(
x̄T
2∶T

C−1(𝜃h)x̄2∶T
)
+ log det |C(𝜃h)|,

communication overhead to achieve global consensus. By 
introducing a set of hyperparameters {�h,1, �h,2, ..., �h,K} and 
the global hyperparameter Z , Eq. (20) is transformed into a 
nonconvex consensus problem:

Generally, Lk(�h,k) is nonconvex with respect to the local 
hyperparameter �h,k . Removing the constraint leads to the 
augmented Lagrangian function of Eq. (21):

where �k is the dual variable and �k represents a predeter-
mined regularization parameter. The (t + 1)-th iteration of 
solving Eq. (22) can be expressed as:

After a certain number of iterations or if the difference 
between the global hyperparameters of two consecutive 
iterations becomes sufficiently small, i.e., ‖Zt − Zt−1‖2

2
≤ � , 

the global hyperparameters Z are considered as the final 
federated fused parameters. Finally, participants substitute 
the fused parameters for the original kernel parameters in the 

(21)
min

K∑

k=1

Lk(�h,k)

s.t. �h,k − Z = 0, ∀k = 1, 2, ...,K.

(22)

Lg

�
{�h},Z, {�}

�
=

K�

k=1

�
Lk(�h,k) + �T

k
(�h,k − Z) +

�k

2
‖�h,k − Z‖2

2

�
,

(23)

Zt+1 =
1

K

K�

k=1

�
�t
h,k

+
1

�k
� t
k

�
,

�t+1
h,k

= argmin
�h,k

�
Lk(�h,k) + (� t

k
)T (�h,k − Zt+1)

+
�k

2
‖�h,k − Zt+1‖2

2

�
,

� t+1
k

=� t
k
+ �k

�
�t+1
h,k

− Zt+1
�
.

Fig. 3   Federated aggregation of 
multiple models
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local models, obtaining the federated model. The federated 
aggregation of multiple models is shown in Algorithm 2. 

Algorithm 2 Parameter aggregation for multi-agent cooperative 
localization

1. Input: for k = 1, 2, ...,K:
            x̄k,1∶T ← Prediction of state series
            �h,k ← Kernel parameters for local model

2. Output: Z∗
← The fused kernel parameters

3. Initialization Parameters: �k, �k for k = 1, 2, ...,K

            � ← Difference threshold of two successive iterations
4. FOR t = 1 ∶ max iteration

5.         Zt =
1

K

∑K

k=1

�
𝜃h,k +

1

𝜌k
𝛽k
�
⊲ for central server

6.      IF ‖Zt − Zt−1‖2
2
≤ � THEN BREAK

7.      ELSE Zt is sent to local models
8.      FOR k = 1 ∶ K⊲ for local participants

9.            
�h,k ← argmin

�h,k

(
Lk(�h,k) + (�k)

T (�h,k − Zt)

                     
+

�k

2
‖�h,k − Zt‖2

2

�

10.           �k ← �k + �k
(
�h,k − Zt

)

11.           upload �h,k, �k
12.          ENDFOR
13.ENDFOR
14.Z∗

← Zt

5 � Numerical Simulation and Analysis

5.1 � Experimental Environment and Local Model 
Settings

During the simulation stage, the experiment is conducted in 
the Gazebo environment. The agent used is the Turtlebot3 
Burger, which navigates a 4 × 5.5m2 area with coordinates 
[−1,−1] and [3, 4.5] representing the lower left and upper 
right corners of the area, respectively. Landmarks are posi-
tioned at [0, 0], [2, 0], [2, 3.5], and [0, 3.5] within the area. 
UWB (Ultra-Wideband) technology is utilized to measure 
the distance and angle between the agent and the four land-
marks, while the IMU (Inertial Measurement Unit) provides 
data on angular velocity and linear acceleration. The UWB 
and IMU data are sampled at a frequency of 100Hz , which 
serves as the system input u in the state-space model (1) 
for inferring the agent’s position at the next time step. Each 
agent undergoes two repetitions of motion trajectories, mov-
ing from the bottom left corner to the top right corner for a 
duration of 12 seconds. These trajectories are used as local 
training data.

Based on the simulation settings, the dimensions of the 
latent state x, system input u, and system output y are set 

to Dx = 2 , Du = 14 , and Dy = 2 , respectively. The sys-
tem input u consists of 8-dimensional UWB readings and 
6-dimensional IMU readings, while the system output y 
represents the position prediction of the trajectory. During 
the training process, incorporating the complete trajec-
tory data into the model at each iteration would result in 
high computational complexity. This could hinder the con-
vergence of model parameters to the optimal values and 
negatively impact the performance of the final federated 
model. To alleviate the computational burden, randomly 
selected batches of data are used for each training itera-
tion. The hyperparameters for single-agent localization are 
presented in Table 1.

Besides, the initial values of �GPSSM play a crucial role in 
determining both the training efficiency and performance. 
The mean value of the initial state �x1

 varies depending on 
the selected batch in each iteration. In our experiment, we set 
�x1

 as the starting point of the selected batch. This means that 
the model will predict the trajectory based on the initial posi-
tion. Since there is a difference in �x1

 for each iteration, we 
choose to fix the variance of the initial latent state Σx1

 . Con-
sequently, the third term in Eq. (16) can be omitted. Addi-
tionally, for each dimension, the inducing inputs are sampled 
from a uniform distribution U ∼ (−2, 2) , while the mean of 
the inducing outputs �d for each dimension is sampled from 
a Gaussian distribution N(0, 0.052) . The initialization of 
other parameters is provided in Table 2. It should be noted 
that, according to the mean-field theory, the variance and 
noise parameters are considered to be independent across 
dimensions without considering covariance. After training 

Table 1   Hyperparameter settings of single model

Hyperparameter Value

Iteration 1000
Sampling times 20
Number of pseudo points 100
Learning rate 0.005
Batch size 5
Batch length 500

Table 2   Initialization of some parameters

Parameter Value (unit)

Variance of initial latent state Σx1
[0.012] ∗ Dx (m

2)

Variance of inducing outputs Σ1∶Dx
[0.012] ∗ Dx (m

2)

Noise of state transition �2
x,1∶Dx

[0.0022] ∗ Dx (m
2)

Noise of measurement output �2
y,1∶Dy

[0.052] ∗ Dy (m
2)

Lengthscale l [2] ∗ (Dx + Du)

Signal variance �2
f

0.52
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the local model for a single agent, the predicted latent state 
series is obtained for subsequent federated aggregation.

5.2 � Results and Analysis

In this paper, we evaluate the performance of a multi-agent 
cooperative localization model based on federated learning 
in the following three aspects: (1) analyzing the impact of 
different numbers of participants in both i.i.d. and non-i.i.d. 
scenarios; (2) comparing the results with centralized learn-
ing as a benchmark to verify the robustness of the feder-
ated model trained in non-i.i.d. scenarios; (3) examining 
the transfer performance of the federated model trained in 
non-i.i.d. scenarios.

Since the value of ELBO does not intuitively reflect the 
precision and accuracy of the predicted trajectory, we intro-
duce the root mean square error (RMSE) as a quantitative 
evaluation index. RMSE is defined as:

where (xt, yt) is the predicted 2-D position at time step t, and 
(x̂t, ŷt) is the corresponding ground truth.

In the experiments involving i.i.d. scenarios, the training 
data of all the agents are subjected to zero-mean Gaussian 
noise interference, as shown in Table 3. On the other hand, 
in the non-i.i.d. experiments, the data of different agents 
are exposed to distinct zero-mean Gaussian noise interfer-
ence. The noise configuration of the test set is different from 
the noise settings of all the agents, with variance sampled 
from various intervals for different sensors, as presented in 
Table 4.

When conducting kernel parameter aggregation for multi-
agent cooperative localization according to Algorithm 2, the 
dual variables �k and the regularization parameters �k are 
initialized to �k = 0 and �k = 500 ( k = 1, 2, ...,K).

The effect of varying numbers of agents involved on the 
final performance in both i.i.d. scenarios and non-i.i.d. sce-
narios is shown in Fig. 4. The effect of varying numbers 
of agents involved on the final performance in both i.i.d. 
scenarios and non-i.i.d. scenarios is shown in Fig. 4. In the 
i.i.d. settings, an increasing number of participants provides 
more homogeneous data for the federated model, resulting in 

(24)RMSE =

√√√√ 1

T

T∑

t=1

[
(xt − x̂t)

2 + (yt − ŷt)
2
]

a decrease in overall RMSE. The median RMSE values are 
0.1474m , 0.1412m,0.1343m , and 0.1368m for the number of 
agents of 4, 8, 12, and 16. While in the non-i.i.d. scenarios, 
the median RMSE values are 0.1605m , 0.1640m,0.1599m , 
and 0.1614m , respectively. Unlike in the i.i.d. scenario, the 
overall error does not exhibit a decreasing trend and remains 
almost constant. Nevertheless, the federated model exhibits 
robust generalization as the number of agents increases. The 
performance of different agents applying federated kernel 
parameters remains stable when confronted with data from 
novel scenarios, which is shown in Fig. 4 as a concentrated 
distribution of blue boxes.

In actual scenarios, the data collected by different agents 
often exhibit heterogeneity. Thus, this study aims to enhance 
the adaptability, robustness, and generalization of the federated 
model across diverse scenarios by leveraging the federated 
learning architecture, while ensuring the privacy of data. Fig-
ure 5 presents a comparison between the trajectory predictions 
obtained through centralized learning and federated learn-
ing on the identical test dataset. In Fig. 5, all trajectories are 
smoothed with a sliding window and RMSE is recalculated. 
Centralized learning, similar the traditional machine learning, 
requires the aggregation of heterogeneous training data from 
all agents [13]. The centralized model achieves a performance 

Table 3   Noise Settings in i.i.d. Scenarios

Sensor data Noise settings

Angular velocity in IMU 2e-4 rad/s (stddev)
Linear acceleration in IMU 1.7e-2 m∕s2 (stddev)
Distance in UWB 0.05 m2 (dev)

Table 4   Noise Settings in non-i.i.d. Scenarios

Sensor data Noise sampling interval

Angular velocity in IMU [1e-5, 2e-2] rad/s (stddev)
Linear acceleration in IMU [1.7e-4, 1.7e-1] m∕s2 (stddev)
Distance in UWB [0.04, 0.15] m2 (dev)

4 participants (iid
)

8 participants (iid
)

12 participants (iid
)

16 participants (iid
)

4 participants (non-iid)

8 participants (non-iid)

12 participants (non-iid)

16 participants (non-iid)
0.05

0.1

0.15

0.2

0.25

R
M

SE

Fig. 4   Effect of varying number of agents in iid and non-iid scenarios



70	 International Journal of Wireless Information Networks (2024) 31:61–72

1 3

of RMSE=0.0175m on the test dataset, yet this approach 
undoubtedly exposes data privacy during the data transmis-
sion. In contrast, with the help of the federated learning frame-
work, the RMSEs were 0.0888m , 0.0779m , and 0.0742m for 
three agents employing the federated kernel parameters con-
structed by the 16 agents jointly. Although the federated model 
has a slight disparity with the centralized model in position 
prediction accuracy, it avoids privacy leakage caused by data 
sharing and better secures local data. Furthermore, the utiliza-
tion of federated kernel parameters by different agents yields 
satisfactory accuracy in position prediction, which indicates 
the robustness of the federated learning model. Figure 6 dis-
plays the cumulative error distribution, revealing that when 
employing the federated kernel parameters, different agents 
achieve approximately 80% of points with errors below 0.1m.

Ultimately, Fig. 7 illustrates the transfer performance of 
the federated model in novel scenarios. The blue line repre-
sents the loss on the validation set during regular training, 
which exhibits high fluctuations and poor convergence in the 
early stages. In contrast, the federated model, constructed 
on heterogeneous data, demonstrates remarkable robust-
ness when confronted with novel scenes. The agents apply 
the federated learning model directly to new environments, 
resulting in rapid and stable loss convergence that consist-
ently surpasses regular training methods.

6 � Conclusion

This paper proposes a novel cooperative localization method 
based on federated learning. A Gaussian process state-space 
model dynamically localized the single agent, effectively 

handling noise. To avoid data privacy leakage in coopera-
tive localization, we realize an aggregation of multi-agent 
models based on a federated learning framework to form 
a cooperative model. Compared with centralized learning, 
the federated model achieves satisfactory position accuracy 
while ensuring the privacy of the original data. Moreover, 
it demonstrates robustness and generalization performance 
when dealing with heterogeneous data. Furthermore, the 
federated model is adept at transfer learning, enabling rapid 
adaptation to new scenarios. In future work, we will focus 
on improving the quality of training data and enriching the 
diversity of agent motions to further enhance the perfor-
mance of the federated model.
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