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Abstract—Collaborative target tracking is an essential task
in positioning systems, particularly in environments character-
ized by high dynamics, multisource heterogeneous data, and
interactive multiagent scenarios. The challenge in such networks
lies in the direct utilization of multisource heterogeneous data
as feature input for models. Additionally, the presence of
high-dynamic time-series data complicates the extraction of
dependencies by the models. To address these issues, we introduce
a novel approach that integrates a factor graph-based data
fusion method with a graph neural network. This combination
is designed to uncover potential dependencies between time-
series data and positional information within dynamic networks.
Furthermore, we employ a self-attention mechanism, enabling
distance-agnostic autonomous selection of complex network fea-
tures. This innovation allows the model to achieve enhanced
accuracy performance while simultaneously reducing compu-
tational costs. We validated our approach through simulation
experiments. The results demonstrated the method’s effectiveness
in fusing and selecting multisource heterogeneous information
within collaborative networks. It also excelled in identifying
potential relationships between feature information and posi-
tional data, showcasing the robustness and applicability of our
proposed solution in challenging collaborative target tracking
environments.

Index Terms—Collaborative tracking, factor graph, factor
graph neural network, graph neural network (GNN), multiagent
network.

I. INTRODUCTION

W ITH the advent of the Internet of Things (IoT), accurate
localization has become a cornerstone in the labyrinth

of smart devices that pervade our daily lives. While the global
positioning system (GPS) remains the bedrock of outdoor
localization due to its high precision and cost-efficiency, its
effectiveness is markedly reduced indoors, where satellite
signals are scarce and prone to obstruction. In the quest for
reliability within indoor and complex environments, alternative
wireless positioning technologies, such as time of arrival
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(TOA) and time difference of arrival (TDOA), have risen to
prominence [1], [2]. These methods, however, grapple with
occlusions and non-line-of-sight conditions that are endemic to
cluttered, dynamic collaborative networks [3]. Such conditions
frequently degrade the accuracy of positioning, presenting a
significant challenge in densely packed IoT ecosystems.

Compounding these challenges are the limitations of tradi-
tional inertial systems. While they offer notable instantaneous
accuracy at a lower cost, their reliance on integration means
that any drift in accelerometer or gyroscope readings can lead
to increasing errors over time [4]. The inherent multisource
heterogeneity of sensor data in dynamic IoT networks further
complicates the landscape, posing a formidable barrier for
traditional positioning methodologies to harness this wealth of
information effectively.

In complex and highly dynamic collaborative networks,
achieving effective collaborative distribution, data screening,
and fusion poses significant challenges in network positioning.
The method of multisource heterogeneous information fusion
effectively harnesses data from various sensors, circumvent-
ing environmental or target perception limitations, thereby
enhancing the system’s external perception capabilities [5].
Wymeersch et al. [6] implemented a Bayesian approach
based on message propagation for processing multisource
heterogeneous data to determine agent locations. However,
the application of this method to highly dynamic networks,
especially those involving time-series data, is limited due
to its high computational demand and the prerequisite of
prior knowledge, such as offline labeling and positioning
networks [7]. To transcend these constraints in current location
technologies, there is a pressing need for a method capa-
ble of fusing multisource data and incorporating time-series
information.

In recent years, graph-structure-based algorithms have
gained widespread use in various graph-related learning
tasks, including node classification, link prediction, and graph
classification [8], [9], [10], [11]. Concurrently, the use of
graph structures has been extended to positioning [7]. Graph
structures, compared to traditional methods, can uncover
additional node interrelations, thereby revealing more poten-
tial interaction information. In the domains of artificial
intelligence and neural networks, stochastic models are typ-
ically represented as Bayesian networks or Markov random
processes [12]. However, in real-world scenarios, time-series
data often constitute incomplete observations of intricate
underlying dynamic processes with high-dimensional states
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that are not directly observable. For instance, human motion
capture data provide specific marker positions, reflecting the
complex kinematic and dynamic constraints of numerous joint
angles [13]. Traditional graph structures, however, often fall
short in depicting these dependencies.

Multiagent localization is a multifaceted process that
encompasses the interaction between agents and the poten-
tial unobstructed variable information of these agents [14].
Even with the integration of multisource data, extracting
useful information from large data sets remains a significant
challenge. Mirowski and LeCun [13] introduced a factor
graph approach tailored for time-series data to elucidate the
relationship between time series and hidden states. Unlike
traditional graph structures, factor graphs are extensively
utilized to model independent random variables. For instance,
approximate inference algorithms are applied in probabilistic
graph models to reason about specified probability graphs [15],
enabling a more accurate representation of the relationships
between state variables and observable variables. In collabo-
rative positioning scenarios that include timing information,
factor graphs can ascertain higher order potential dependen-
cies, thereby facilitating the analysis of correlations between
time series and data features [16]. However, in multiagent
cooperative networks, defining an effective prior model is
challenging, often resulting in suboptimal approximate infer-
ence outcomes. Thus, efficiently processing data features in
highly dynamic complex networks to enable automatic learn-
ing of inferential relationships and feature screening poses a
formidable challenge.

Addressing this issue, Gori et al. [17] proposed the graph
neural network (GNN) method, which learns potential vari-
ables and reasoning processes from data. This method only
requires the provision of a graph structure with dependency
relationships to better explore information within real data.
Moreover, Zhang et al. [16] developed the factor GNN method,
extending factor graphs to GNNs. This approach effectively
tackles point cloud data classification but still struggles with
the screening of complex input data. Veličković et al. [10]
introduced a graph attention method that filters data by
assigning weights to different graph nodes. However, this
method requires recalculating graph attention when the graph
structure changes, making it less suitable for the real-time
demands of dynamic networks.

Furthermore, self-attention mechanisms have become cru-
cial in various tasks, enabling the modeling of dependencies
regardless of the distance between input and output
sequences [18], [19], [20]. In terms of computational com-
plexity, self-attention offers parallel computation advantages
compared to networks like RNNs. This mechanism processes
the input sequence into queries, keys, and values, subsequently
deriving a weight coefficient by calculating the similarity
between the query and the key. The final output is a weighted
summation of the values and these weight coefficients. The
parallel nature of this computation primarily lies in the simi-
larity calculation between queries and keys, achieved through
matrix multiplication. Since matrix multiplication is highly
parallelizable, it significantly accelerates model computation.
When the sequence length n is less than the representation
dimension d, the self-attention layer outperforms recurrent

layers, making it more efficient for short-sequence timing
information [20]. In practical positioning scenarios, we often
use timing information close to the current moment for com-
putation. Therefore, the self-attention mechanism can address
data screening challenges while reducing computational costs
in dynamic networks.

In this article, we propose a collaborative localization model
based on factor graph self-attention. This model leverages
the synergistic integration of self-attention mechanisms and
factor graphs within a GNN framework, enabling the effective
screening of features from multiagent nodes. This approach
addresses the challenges of multisource heterogeneous data
fusion and screening and realizes multiagent localization
through the use of factor GNNs to learn the reasoning process
of data features. The primary contributions of our research are
as follows.

1) General Factor Graph-Based Framework for
Collaborative Target Tracking: We introduce a
comprehensive framework that incorporates factor
graphs within the realm of GNNs. This framework is
specifically designed to navigate the unique challenges
found in collaborative target tracking, such as dynamic
environments and intricate agent interactions. It marks a
significant advancement over conventional cooperative
network approaches by enabling adaptive learning and
meeting the real-time demands of dynamic scenarios.

2) Advanced Data Fusion Method Utilizing Factor Graphs:
Our methodology presents an innovative data fusion
approach, transforming heterogeneous data from a vari-
ety of sources into a structured graph format. This
facilitates efficient processing of dynamic and complex
data sets and enables the automatic discovery of complex
inferential relationships, thus surpassing the constraints
typically associated with traditional graph models.

3) Integration of Self-Attention Mechanism in Factor
GNNs: We have successfully integrated a self-attention
mechanism into the factor GNN architecture. This
enhancement bolsters the model’s proficiency in pro-
cessing timing information from agents and efficiently
filtering interaction features. Consequently, our model
adeptly extracts pertinent data features within highly
dynamic and complex network environments, assisting
collaborative agents in actively selecting perceptual data
to optimize their pose estimation. This functionality
is particularly beneficial in scenarios with uncertain
network conditions.

The remainder of this article is organized as follows.
Section II introduces the related work and research, elab-
orating in detail on the merits of this study. Section III
describes the localization method of factor GNNs based on
self-attention, followed by experimental results and discus-
sions in Section IV. Section V concludes this article with a
comprehensive summary.

II. RELATED WORK

A. Cooperative Localization

Collaborative localization involves both the self-observation
of agents and the measurement of interactive information
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TABLE I
STRENGTHS AND LIMITATIONS OF VARIOUS KINDS OF WORK IN

COLLABORATIVE TARGET TRACKING APPLICATIONS

between them. Current methods for localization primarily fall
into two categories: optimization-based and learning-based
approaches. Optimization-based methods include maximum-
likelihood estimation [21], [22], the least-squares (LSs)
method [6], multidimensional scaling [23], [24], [25], and
Bayesian message propagation [6], [26], [27], among others.
A comparative analysis of the methods presented in this article
and the pros and cons of existing methods are delineated in
Table I.

The maximum-likelihood estimation method treats noise as
a definitive probability distribution [28], [29], but this can
lead to significant performance degradation in the event of
incorrect matching [7]. In the realm of machine learning,
Xie and Yang [30] developed an indoor positioning method
that combines random forest and deep learning. This method
employs deep learning to train the channel propagation model
offline and determine the orientation of agents during the
online stage. Yan et al. [7] introduced a location method based
on GNNs, which addresses the computational performance
challenges in large-scale networks and provides enhanced
accuracy and stability for static localization of large-scale
agents. However, in highly dynamic cooperative networks
where the agent target is typically dynamic and includes time
series of historical moments, the GNN method struggles to
effectively utilize time-series information.

Addressing this gap, Liu et al. [31] proposed a dynamic
representation learning framework for network embedding
on large-scale attributed networks. This approach models
time-varying network features for dynamic attribute network
embedding. In the offline learning stage, node embedding
is generated by discovering potential node attributes and
network structure to guide the learning subspace. In the
online learning stage, dynamic network features are processed
through timely and incremental updating of node embedding.
In terms of heterogeneous data, Wang et al. [32] introduced
the HAN method, incorporating the attention mechanism into
the heterogeneous GNN. This method maps node features
of different dimensions to a uniform dimension, effectively
addressing the challenge of heterogeneous data processing and
providing a clear explanatory framework. Building upon this,
our paper adds a self-attention method to the factor GNN
framework, thereby effectively resolving the heterogeneous

Fig. 1. Factor graph.

data processing challenge in the cooperative localization envi-
ronment.

Addressing the complexities of high-dynamic environments,
Patwardhan et al. [33] introduced a planning method based on
confidence propagation, delving into robot planning challenges
in high-speed, congested traffic settings. This method partic-
ularly addresses the issue of heterogeneous data in dynamic
environments. By categorizing complex data from dynamic
settings into distinct factor nodes according to their sources,
the approach facilitates effective path planning. To capture
long-term dynamic dependencies effectively, it is imperative
for a model to maintain an internal state that adheres to
dynamic constraints. To address this requirement, the concept
of a dynamic factor graph has been proposed. In this context,
factor graphs are applied to time-series data to map out the
dependency relationships between state variables and observ-
able variables, thereby unveiling higher order dependency
relationships. Building on this foundation, Murai et al. [34]
proposed a dynamic factor graph localization method that
utilizes Gaussian confidence propagation. They developed
a methodology that employs probabilistic factor graphs for
perception and state estimation. By adopting Gaussian con-
fidence propagation as the inference algorithm, this method
enables agents to accurately estimate and adapt to dynamically
collaborative scenes through self-organizing communication.

B. Factor Graph

Factor graphs, as shown in Fig. 1, are a class of graphical
models used to infer tasks in probabilistic models by using
graphs to represent dependencies between variables. The factor
graph G = (V, F, A) of bipartite graph is defined, which con-
tains a group of variable nodes V , a group of factor nodes F,
and a group of undirected edge A representing the connection
relationship between variable nodes and factor nodes. Variable
nodes represent hidden random variables and are usually
represented by circles. Factor nodes represent probability-
based dependencies between variable nodes, usually in square
form.

In the graph, every node i ∈ V is associated with a
random variable xi, and every node j ∈ F is associated with a
function fi. There is an edge connecting nodes fi to nodes xi if
and only if the factor node fi depends on the variable node xi.
For example, a function f (x1, x2, x3, x4, x5) with the sum of
variable nodes x1, x2, x3, x4, and x5 factors the function into a
product form

f (x1, x2, x3, x4, x5) = fA(x1, x2)fB(x2, x3, x5)fC(x3, x4)fD(x5)

(1)
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wherein, it includes factor node F = {fA, fB, fC, fD} and
variable node V = {x1, x2, x3, x4, x5}.

Over the past few decades, factor graphs have gained
widespread use in coding and stochastic modeling for defining
probability graph models and modeling dependencies between
random variables. To address coding challenges, [35] intro-
duced the sum–product algorithm based on belief propagation.
This algorithm effectively solved the decoding problem of
LDPC codes, markedly enhancing their error correction
capabilities. The sum–product algorithm [36], a message-
passing algorithm, computes marginal distributions through a
series of locally computed messages. It is adept at accurately
or approximately calculating global functions [37]. Tanner [38]
employed graphs to describe and generalize this encoding
method, introducing the minimum sum algorithm. In recent
years, factor graphs have emerged as an effective method for
multisource information fusion in collaborative localization.
For instance, Von Stumberg et al. [39] proposed a factor
graph-based approach that addresses computational redun-
dancy and asynchronous delay in multisource information
processing, offering the advantage of plug-and-play
functionality.

However, a significant challenge in practical scenarios
is that we often obtain only an approximate value of the
true distribution of the probability graph model, resulting
in suboptimal outcomes. Additionally, message propagation
technology, integral to factor graph methodologies, encounters
limitations within cyclic graph structures. It is generally
limited to calculating approximate values of the ideal posterior
distribution, which can impede algorithm convergence [40].
Consequently, there has been growing interest in combining
message propagation technology with graph networks in the
coding field and classification tasks [16], [33], [40]. Satorras
and Welling [40] proposed a method that merges traditional
message propagation with GNNs, applying it to LDPC cod-
ing to address complex noise issues in Gaussian channels.
Additionally, Zhang et al. [16] integrated the factor graph
model with graph networks for classifying point cloud data. By
utilizing graph network algorithms, models can learn potential
variables and inference processes from data, requiring only the
graph structure to provide variable dependencies. While factor
graphs excel at capturing higher order potential dependencies
in scenarios involving time-series information, their direct
application to target tracking is hindered by the common
necessity to approximate the true distribution of the probability
graph model in real-world scenarios, leading to less than
optimal results. Moreover, the message propagation technique
faces considerable limitations in cyclic graph structures, typi-
cally computing only approximate values of the ideal posterior
distribution, which may prevent algorithm convergence and
thus diminish the effectiveness of factor graph approaches in
meeting the specific requirements of target tracking. Therefore,
the integration of factor graph models with graph networks
can enable models to actively learn the reasoning process of
agents, discover potential motion features from time series and
agent characteristics, and consequently achieve more accurate
target localization.

C. Attention Mechanism

In the domain of collaborative positioning, the complexity
of a vast array of input data features and the accumulation
of time-series information pose challenges in computational
performance and associated costs for models. To address these
challenges effectively, the attention mechanism has emerged
as a standard in many sequential tasks. Its key advantage
is the ability to process inputs of any size and focus on
the most relevant features within those inputs [10]. The
self-attention mechanism connects information from different
locations within the same sequence, facilitating the compu-
tation of sequence representations. This approach has seen
successful applications in various tasks, including reading
comprehension, summary generation, and text implication,
by enabling the selection of effective features from massive
data sets, thus enhancing model performance while reducing
computational costs [41], [42], [43], [44].

Graph attention mechanisms have gained widespread use in
graph structures. Veličković et al. [10] introduced an attention
mechanism that filters data by assigning weights. However,
the incorporation of double computation and time series in
dynamic graph structures tends to increase computation time.
Methods such as those proposed by Kosaraju et al. [45],
Alahi et al. [46], and Gupta et al. [47] initially employ the
long short-term memory model [48] to capture each agent’s
track features over time. These features are then fed into an
interactive model GNN [8] to identify interactions between
agents. However, such methods can lead to computational
resource wastage, and issues like gradient vanishing and
exploding can adversely impact the model’s performance and
accuracy.

To overcome these challenges, Schwartz et al. [49] proposed
applying the graph attention mechanism to factor graphs for
classifying image-based dialog. This innovative approach has
paved new paths for utilizing attention mechanisms within
factor graphs. Inspired by these methods, this article applies
the self-attention mechanism to the factor graph network.
This application enables the screening and extraction of
features from accumulated time-series data and the selection
of effective features from numerous inputs, thereby enhancing
the performance of the collaborative localization model.

III. SELF-ATTENTION FACTOR GRAPH NEURAL NETWORK

In this section, we define the symbolic definition of data
items in the collaboration localizatiion scenario, and then
the data fusion of multisource heterogeneous data in the
highly dynamic network is introduced based on the factor
graph. Factor graphs help us capture dependencies between
information. We further extend the factor graph into factor
GNN, and realize the autonomous feature screening and
learning inference process of agents based on self-attention,
so as to achieve cooperative localization, as shown in Fig. 2.

A. Problem Formulation

This article assumes that the collaboration scenario is a
2-D wireless network space, assume the current time is
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Fig. 2. Self-attention factor GNN.

T(T > 0), Sa = {1, 2, . . . , N} represents the directory of
the agent collection, where N is the number of agents. Xt =
{xt

1, xt
2, . . . , xt

N} represents the joint state of all N agents in
t(t < T), including agent position p, velocity v, orientation
angle a, and interagent distance data d; xt

i = {c1, c2, . . . , cM}
represents agent measurement data at time T , including agent
velocity v, orientation angle a, and distance between agents d
at the current time. Let YT = {yT

1 , yT
2 , . . . , yT

N} represent the
predicted state of all agents at time T . The objective of this
article is to locate the position information of all agents at the
current moment based on the measurement data of multiple
agents at the current moment XT and the observation state of
historical moment in the collaborative network Xhis = {Xt}T−1

t=0 ,
expressed as ρσ (YT+1|Xhis, xT).

B. Multisource Data Fusion

Aiming at the problem that multisource heterogeneous data
of agents cannot be directly used as model input in collabora-
tive scenarios, this article proposes a solution. First, we define
the interaction characteristics of agents as self-information
factor nodes, the characteristics of agents themselves as vari-
able nodes, and the hidden feature information obtained based
on self-attention time-series data as dynamic factor nodes.
Then, we set up the form of factor graph, fused multisource
heterogeneous data, and carried out feature mapping. By this
means, we transform the raw data into agent characteristics
acceptable to the model. In this way, we can effectively process
multisource heterogeneous data in collaborative scenarios and
improve the accuracy and reliability of the model.

For the measurement data xT
i = {c1, c2, . . . , cM} obtained

by the sensor at time T of the multiagent, according to the data
dependency relationship, it is defined as the measurement data
between agents obtained by communication sensors, namely
mutual information XT

mut, and the measurement data of the
agent itself obtained by the sensor inside the agent, namely
self-information XT

self. Where, the self-information XT
self ={Xi}Ni=0 only represents the data of agent i, including the

acceleration information and orientation angle of agent i at
time T , which is defined as a variable node in this article.
Mutual information XT

mut = (Xij)
i,j=N
i=0,j=0 contains the ranging

information between agent i and agent j at time T , which is
dependent on the data of agent ij at a single time, which is
defined as an internal factor node in this article. The original
data obtained by these sensors cannot be calculated directly

Fig. 3. For multisource heterogeneous raw data, different feature mapping
layers are used to transform it into standard input features, and the data sources
are classified into different nodes of factor graph.

as the input of the model due to the heterogeneity of the
data resulting in different feature dimensions. Therefore, for
different kinds of feature data ci in xt

1, this model uses multiple
feature mapping layers ϕi and standardized functions θi to
transform data features of different dimensions into the same
d-dimension feature vector Ci, and then uniformly process
them through standardized functions.Finally, all feature vectors
are mapped to a d-dimensional feature space for calculation,
as shown in Fig. 3.

Sensor data ci in collaborative network contains speed
information, angle information, and distance information,
respectively. According to the data dimensions of different
structures, this article defines the feature mapping function

ϕi ← φi

(
wi

Di×d, d
)

(2)

where wi
Di×d is the network parameter. Feature mapping

function can transform multisource heterogeneous data into
unified dimension input features, which is convenient for
model calculation. However, due to the different input data
units and orders of magnitude of different structures, direct
input will lead to poor performance of the model. In order
to deal with this problem, this article obtained k samples in
simulation scenarios for data in collaborative scenarios, and
defined standardized functions using Gaussian distribution

θi ← Q−∑k
i=1 Qi

√
k ×

√
∑k

i=1

(
Qi −

∑k
i=1 Qi
k

)2
(3)
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where Qi is sample data. According to the defined feature
mapping function and standardized function, the multisource
heterogeneous data fusion function of this model is as follows:

Ci = θi

(
ϕi(ci, wi

Di×d, d)
)
. (4)

According to different data dependencies, this model takes
the interaction features between agents extracted from data
as the internal factor node Fi of the factor graph, and takes
the features of agents themselves as the variable node V
of the factor graph. In addition, the model represents the
communication relationship between agent i and agent j as an
adjacency matrix Aij

Aij =
{

0, no communication between agents ij
1, communication between agents ij.

(5)

Then, the factor graph at time t is expressed as G =
(V, Fi, A). Such representation makes it easier for the model
to deal with the communication relationship between agents,
so that it can calculate and predict more accurately.

In the cooperative network of agents, the position of agents
at the next moment may be affected by the historical motion
state of agents. Therefore, in order to obtain the motion hiding
state of the agent from the historical characteristics of the
agent, we introduce dynamic factor nodes into the factor
graph. This node connects the factor graph variable node
of the current moment and the agent variable node of the
historical moment to obtain the characteristics of the historical
state of the agent. Specifically, for the agent characteristics
chis = {cT−k+1, cT−k+2, . . . , cT} before the observed time T ,
a variable time length p(p > 0) is selected to obtain the agent
historical state characteristics cp = {cT−p+1, cT−p+2, . . . , cT},
where cT = {ct

1, ct
2, . . . , ct

N} represents the historical data
characteristics of all N agents at the time t. We can get the
historical feature matrix mathis by the column matrix of all
the features of historical moments cT . In order to learn the
relationship between historical states and hidden motion states,
this article adopts self-attention network to obtain hidden
state S

S = selfattention(μi) = softmax

(
μi

Tμi√
d

)
μi (6)

μi
(i∈1,2,3) = Wi(ωi, mathis) (7)

where Wi is trainable network, ωi is the parameter of attention
network, and S is the hidden state of timing information of
variable nodes, as shown in Fig. 4.

In Section III-B, we elaborate on the construction and
utility of the factor graph within our algorithm, highlighting its
contributions to enhancing data processing efficacy and model
accuracy. The factor graph encapsulates the dynamic factor
nodes, which correlate with the variable nodes representing
the model’s hidden states S, across adjacent time points, thus
forming a continuous time factor graph. Through this con-
struction, our model transforms cooperative network data into
input features that are conducive to the model’s requirements,
capturing essential feature dependencies. This factor graph
creation process not only refines the data representation but
also optimizes the model’s performance.

Fig. 4. For the obtained variable nodes, the hidden features of the history
state are extracted from the attention network.

Fig. 5. Established factor diagram.

C. Establishment of Factor Graph Neural Network

Through the above multisource heterogeneous data fusion
process, we can establish a factor graph with continuous
moments and obtain the connection dependence relationship
between nodes. However, it is often difficult to obtain a
priori model of feature inference in highly dynamic collabo-
rative networks. Therefore, we introduce self-attention neural
network to learn the feature inference relationship, and enable
agents to actively select and screen the most beneficial feature
information.

Fig. 5 introduces the process of establishing factor graph
in this article by taking three agents as an example. For
variable node V and internal factor Fi node obtained through
information fusion at time t in the previous section, xt

i is used
in this article to represent characteristic information of variable
node V of agent i at time t. f t

ij represents the internal factor
node F between agent i and agent j at time t, represents that
the variables xt

i and xt
j are dependent, Then, there is an edge

connecting the variable node V with the internal factor node
Fi. For the dynamic factor node FD obtained from the timing
information of variable node. In this article, f t

D represents the
dynamic factor of the agent obtained according to the historical
characteristic state at time t, which is dependent on variable
nodes of the factor graph at adjacent moments. Then, there is
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Fig. 6. By establishing factor GNN and based on self-attention, cooperative
localization is realized.

an edge connecting all variable nodes V and dynamic factor
nodes FD.

For factor graph G = (V, Fi, FD, A). In order to obtain
the motion trend at time t + 1, it is necessary to take the
observation state at the current time as the query object and
search for similar motion trend in the state at the historical
time. Therefore, this article takes the input characteristics and
mutual information of the current moment V, Fi as the query
value, and the dynamic factor of the historical moment FD as
the index and the queried value for self-attention calculation,
as shown in Fig. 6. For the characteristic information ci

of variable node i and the internal factor nodes cFi =
{c1

Fi
, c2

Fi
, . . . , cmi

Fi
} of self-information connected to it, mi is

the number of factor nodes connected to variable node i.
Calculate the query value of the input feature at time t+1, and
obtain the query value through matrix splicing and multilayer
neural network

Q = W(1)
(
ωQ, W(2)(cat(ci, c1

Fi
, c2

Fi
, . . . , cmi

Fi
), ωQ)

)
(8)

where W(1), W(2) is the trainable network, ωQ is the network
parameter, and cat is the eigenmatrix concat function. For
the dynamic factor node feature cFD of the hidden state S of
historical motion, as the queried value at time t+ 1, the index
and value of self-attention network are calculated, respectively

K = W(3)
(
ωK, cFD

)
(9)

V = W(4)
(
ωV , cFD

)
. (10)

Based on the obtained values of Q, K, and V , self-attention
network calculation is carried out to obtain the position feature
information at time t + 1

Ypred = MLP

(
W(5)

(
softmax

(
QTK√

d

)
V

)
, ω

)
(11)

where W(5) is a trainable network, ω is a network parameter,
multilayer perceptron (MLP) is fully connected MLP. In order
to optimize the network weight W, root mean-square error

Algorithm 1 Training

Input: Di(i ∈ M), ci ∈ xt
i, Qi, Time information Xhis and label

YT

for i = M, . . . , 1 do
Create ϕi by (2).
Create θi by (3).
GET (Vc, Fk) = Ci by (4).

end for
Obtain the adjacency matrix by

Aij =
{

0, no communication between agents ij
1, communication between agents ij.

repeat
Create mathis = concat(Xhis, p).
Add S to FD by (6) and (7).
Create Factor Graph network G = (V, Fi, FD, A).
for i = N, . . . , 1 do

Get ci from V .
Get cm

Fi
from Fi.

Get cFD from FD.
Create Q,K,V from (8), (9) and (10).
Calculates the agent information.
Get Ypred by (11)

end for
until argmin(L) = RMSE(|YT − Ypred|2)

(RMSE) can be minimized. The constrained optimization
objective of the loss function is

argmin(L) = RMSE
(
|Y − Ypred|2

)
. (12)

In this article, the ADAM optimizer is used to train the
network model. In the training process, the mean-square error
(MSE) between the model’s prediction results of the target
location and the actual location information is minimized
on the training set, as shown in Algorithm 1. Finally, the
prediction is made on the test set and the positioning result of
the target position is obtained.

IV. EXPERIMENT AND ANALYSIS

In this section, we use a data set of simulation scenarios
to evaluate the performance of the model in this article and
experiment with the following research questions (RQs).

RQ 1: What scale of multiagent network does this model
apply to, and how does the model performance change with
the number of agents? (Fig. 7).

RQ 2: Does the hidden state extracted from the time series
of the model in this article affect the final position estimation
accuracy of the model, and how to choose the length of the
time window? (Fig. 8).

RQ 3: How does the communication threshold between
agents affect the accuracy of the model? Under what commu-
nication conditions can the proposed model achieve optimal
performance? (Fig. 9).

RQ 4: What is the impact of each data module, including
data fusion, internal factor and dynamic factor, on the accuracy
of the model? (Fig. 10).
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Fig. 7. Model accuracy under different number of agents.

RQ 5: Compared with existing collaborative network local-
ization methods, how does the proposed model perform?
(Fig. 12).

A. Setups

Prior to initiating model training, we established a well-
defined training procedure. On the hardware front, all
simulations were executed on a server computer furnished with
a 13-core 3.40-GHz CPU and an NVIDIA 4080 GPU with
12 GB of memory. Regarding the software environment, we
employed a training regimen of 100 epochs for all methods
under consideration, with a batch size of 15 for each epoch.
The optimization was performed using the Adam optimizer,
set at a learning rate of 0.001. For the parameter experiments,
we selected an array of continuous parameter values to
evaluate the average performance of the trained model across
100 generated test data sets. In the ablation and comparative
experiments, we applied the optimal parameter values derived
from the initial parameter experiments to facilitate a fair
comparison across various noise conditions.

We generated the data set through the simulation scene.
First, the initial coordinates of N agents were randomly
generated in a square area of 100 m * 100 m. The value
of N was set according to different experimental parameters,
ranging from 1 to 20. For each agent i, we set a fixed step
size ai and a fixed angle bi, and add measurement errors
when it is used as sensor data, which conform to the Gaussian
distribution. where, anois

i = ai + nai , bnois
i = bi + nbi , nai ∼

N(0, σ 2
ai
), nbi ∼ N(0, σ 2

bi
).

In the process of data set generation, we asked all agents to
walk 25 time steps in the simulation scene according to their
fixed step size and angle. At each time step, we calculate the
distance dist

ij between the agents as one of the sensor data, and
add the measurement error dis_noist

ij = dist
ij + ndist

ij
, ndist

ij
∼

N(0, σ 2
dist

ij
) when adding the sensor data.

B. Numerical Simulations

1) With Different Numbers of Agents: Aiming at problem
1 in the experimental part, we tested the positioning accuracy

Fig. 8. Model experiment results under different window sizes.

changes of the proposed model under different number of
agents. Experimental results are shown in Fig. 7. RMSE is
used as the measurement standard of positioning accuracy. Our
experimental analysis indicates that the model’s positioning
accuracy becomes notably stable with an average error of
0.2561 m when the agent count is above eight. This stability
continues with increasing agent numbers, suggesting that the
interaction among a larger set of agent features is beneficial
up to a point. The chosen interval of [4, 7] for the historical
moment window size stems from a comprehensive evaluation
of the model’s performance across various configurations. It
represents a pragmatic range within which the factor graph
network can effectively utilize collaborative information to dis-
cern the agents’ motion states without incurring the drawbacks
of processing a potentially overwhelming feature set.

In conclusion, the model presented in this article can show
stable average performance with the increase of the number
of agents in the multiagent co-operating scenario. Compared
with the traditional static positioning method, the proposed
model can realize the dynamic positioning of a certain scale of
agents, and can meet the actual requirements of high dynamic
collaborative positioning scenarios.

2) Effect of Different Window Sizes: Fig. 8 shows the
positioning performance of this model based on historical
time-series data under different window sizes. We use RMSE
as a measure of positioning accuracy. The experimental results
show that when the length of the historical time window is less
than 2, the positioning accuracy of the model is the lowest,
reaching 1.424 m. With the increase of window length, the
positioning accuracy of the model is gradually improved, and
the minimum error of 0.2768 m is reached when the window
length is 5. However, as the window size further increases,
the performance of the model begins to slowly decline. When
the window length is less than 2, due to the small amount
of historical data, the model cannot effectively obtain the
historical motion state, resulting in poor performance. With
the increase of window length, the historical state that can
be obtained by the model increases, which improves the
prediction effect of the motion trend of the agent. However,
when the window length is further increased, the experimental
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Fig. 9. RMSE under different communication thresholds.

results show that the more distant historical data has a smaller
effect on the agent position prediction at the current moment.
In addition, the number of input historical features is large,
which makes it difficult for the model to accurately extract the
history hidden state from the large historical data, resulting in
lower test accuracy.

In conclusion, the proposed model can effectively utilize
historical data information and improve the positioning accu-
racy of collaborative agents by extracting the hidden state of
historical motion. In terms of the selection of time window
length, a reasonable window length value should be selected
in the interval [4, 7] according to the experimental results.

3) Effect of Different Communication Thresholds: In the
location scenario, different communication thresholds T play
an important role in data fusion and filtering. The main
research in this section is to evaluate the positioning accuracy
of this model under different threshold selection conditions.
When the distance between two agents is greater than T , the
agents do not communicate with each other. When the distance
between agents is less than or equal to T , communication is
connected. Fig. 9 shows the results of RMSE under different
values of T in this model. It can be seen that when the
communication threshold T is less than 20, the MSE RMSE
is 0.2341 m. As T gradually increases to 30, RMSE decreases
to the minimum value 0.2297 m. When the threshold value T
is further increased to greater than 55, the average error of the
model reaches the maximum value of 0.2524 m.

Our analysis has revealed that when the communication
threshold window length is less than 25, the model is con-
strained by an insufficient historical data pool, which hampers
its performance. As the window length extends beyond this
lower threshold, the model gains access to an increasing
amount of historical state information, thereby enhancing its
ability to predict the agents’ motion trajectory more effectively.
Conversely, we observed that expanding the window length
beyond 32 yields diminishing returns. This is due to the fact
that older historical data exerts a progressively minor influence
on the current position prediction of the agent. Additionally,
a larger set of input historical features could overwhelm
the model, complicating its task of accurately extracting the

Fig. 10. RMSE under different noise variances.

relevant historical states from a vast data trove, which our tests
showed can lead to a decline in accuracy.

It is this nuanced relationship between window length and
historical data utility that guided our selection of the interval
[25, 32]. This range represents the empirical sweet spot where
the model benefits from sufficient historical information to
enhance predictive accuracy without being encumbered by an
overload of less influential data points.

4) Ablation Study: In order to investigate the influence of
different modules in the model in this article on the results, we
conducted ablation experiments. We conducted experiments
on data fusion module, historical time-series data module and
interaction data module between agents under different noise
variance conditions, and the results are shown in Fig. 10 and
Table II. With the increase of noise variance, the RMSE of
all methods increases gradually. The model in this article has
the best performance in terms of positioning accuracy, and can
also show better performance when the noise variance is high.
In contrast, the model without the information fusion module
performed the worst. The results of ablation experiment show
that the data fusion module has the greatest influence on
the model. Considering that the heterogeneous nature of the
input data leads to different orders of magnitude and units
of data, the convergence effect of the model is poor without
data fusion. The historical data module and the interagent data
module also greatly improve the model performance. When
there is no historical data, the model only uses the interactive
information between the current motion model and the agent
to predict, resulting in poor prediction effect. However, when
there is no interagent cooperative information, the model only
uses the historical motion trend and current motion state to
predict, without interagent information cooperative correction,
the effect is also inferior to the model in this article.

C. Physical Experiment

In the physical experiment, we set up four auto-robots
equipped with UWB and IMU sensors in a 10 m × 10 m
field, as shown in Fig. 11. The robots were allowed to move
in random walk motion, and their sensor information and
position data were collected during the experiments. The
ground-truth positions were captured using the NOKOV optics
motion tracking system [50]. We evaluated the algorithm’s
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TABLE II
AVERAGED LOSS (RMSE) OF ALL METHODS UNDER

DIFFERENT ANGLE NOISE CONDITIONS

TABLE III
MULTIDIMENSIONAL COMPARISON OF DIFFERENT METHODS

Fig. 11. (a) Scene for physical experiment. (b) Auto-robot and sensors used
for the test.

performance based on the trajectory paths and localization
errors of the agents.

To assess the effectiveness of our proposed model, we
conducted comparative analyses with several collaborative
localization methods, including graph attention networks
(GAT), LS, graph convolutional networks (GCNs), and the
recently introduced graph transformer networks (GTNs).
Particularly, we utilized the GTN method as a comparative
benchmark for the self-attention component within our model.
In scenarios with varying noise variances and a fixed agent
count of 10, we evaluated the performance of these methods,
as depicted in the revised Fig. 12. Our method consistently
exhibited superior MSE performance, especially with increas-
ing noise variance. Notably, our model, along with the GTN
and GAT methods, displayed a similar error trend. In contrast,
the LS method showed a more gradual error increase with
rising noise variance, while the GCN method demonstrated
the least effective performance.

Table III presents a detailed comparison of our method
against existing methods, considering metrics, such as MSE,
Mean Error, and computational time. The data in Table III
reveals that our model achieves lower MSE and Mean Error
rates, thus surpassing both the GAT and GTN methods in
terms of accuracy. We also assessed computational efficiency
by measuring the model training time. The results confirmed
that our self-attention mechanism reduces computational time,

Fig. 12. Under different communication threshold, model experiment results.

enabling our model to function more efficiently compared to
other attention and graph-based methods. This efficiency leads
to a shorter startup time, enhancing the practical applicability
of our model.

The experimental comparisons address research question 5
(RQ 5), illustrating that our model, along with GTN and GAT,
follows a similar error trajectory. The LS method exhibits a
steadier error increase as noise variance intensifies, while the
GCN method is the least efficient. Importantly, our model
outperforms the GTN method, which also incorporates an
attention mechanism, in positioning accuracy. These findings
validate that our self-attention method excels in data filtering,
and our integration of this method within a factor graph-based
neural network framework significantly improves localization
accuracy. Compared to the static graph network approach of
GCN, our model effectively utilizes historical dynamics to
discern the hidden motion states of agents, facilitating more
efficient data fusion and reasoning via the factor GNN in
dynamic environments. Furthermore, our model’s comparison
with GAT highlights the efficacy of our self-attention method
in capturing historical motion states and its dynamic adaptabil-
ity to varying agent numbers, meeting the demands of dynamic
collaborative scenarios.

V. CONCLUSION

In this article, we introduce a pioneering self-attention
co-location method based on factor graphs, specifically engi-
neered to integrate multisource heterogeneous data within a
cooperative network. This approach utilizes a self-attention
neural network to discern and analyze the inference processes
among various types of information and actively filter agent
data. Through an array of experiments, including parametric,
ablation, and comparative studies, our model has proven to
outperform traditional methods like GCNs, GATs, and MLPs.
The results from these experiments underscore the influence
of varying window sizes and communication thresholds on
the model’s performance, highlighting the strengths of our
proposed approach.
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However, our experiments have also uncovered certain
limitations in the model. A notable issue is the model’s
reduced stability in accuracy when dealing with a small
number of agents or when constrained by short startup times.
This observation points to a need for enhancements in the
model’s generalization capabilities to ensure its effectiveness
in a wider array of scenarios.

Moving forward, our future work will focus on overcoming
this limitation. We plan to investigate strategies to boost the
model’s adaptability, especially in scenarios involving fewer
agents and reduced operational durations. Possible solutions
might include incorporating more sophisticated machine learn-
ing techniques for improved feature extraction and developing
advanced training protocols to increase the model’s robustness.
In addition, we aim to explore the scalability of our model
across diverse operational environments, with the goal of
expanding its practical applicability and overall efficacy.
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