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Abstract— In modern navigation and positioning systems,
accurate location information is crucial for ensuring system
performance and user experience. Particularly, in scenarios
involving the use of multiple agents such as robots and
drones for rescue operations in unknown complex environments,
accurate localization is fundamental for subsequent actions.
However, traditional filtering-based localization algorithms may
exhibit suboptimal performance and are sensitive to initial
estimates and system noise. To address these issues, this
paper proposes a multi-agent collaborative localization algorithm
based on reinforcement learning compensation filtering to
tackle localization problems in complex environments and
improve the robustness and accuracy. Specifically, this paper
introduces a value decomposition-based reinforcement learning
network for filtering compensation to reduce overall localization
error and address the credit allocation problem in multi-
agent reinforcement learning. The main contributions of this
paper are as follows: Firstly, a local localization estimation
method based on reinforcement learning compensation Extended
Kalman Filter (EKF) is proposed, which further corrects the
results of the EKF algorithm and eliminates initial estimation
errors. Secondly, a global collaborative localization estimation
algorithm (MARL_CF) based on credit allocation in multi-
agent reinforcement learning is proposed, which maximizes
the reduction of overall localization error through information
sharing and global optimization. Finally, the effectiveness of
the proposed algorithms is validated through both numerical
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simulation and physical experiments. The results demonstrate
that the proposed MARL_CF significantly improve the accuracy
and robustness of localization in complex environments.

Index Terms— Multi-agent reinforcement learning, nonlinear
filtering, value decomposition, cooperative localization.

I. INTRODUCTION

POSITION information plays a pivotal role in location-
based services (LBS), such as smartphone navigation

and autonomous vehicles [1]. The accuracy of positioning
is crucial for both system performance and user experience,
particularly in scenarios involving multiple agents, such as
robots and drones, operating in complex and unfamiliar
environments during rescue operations [2]. The primary
objective in such scenarios is to estimate the pose and
state information of each agent, as it directly influences the
efficiency of path planning.

To achieve high precision and real-time performance,
researchers have explored cooperative localization methods,
with a focus on Ultra-Wideband (UWB) and Inertial Measure-
ment Unit (IMU) technologies, both of which have garnered
significant attention due to their unique advantages [3]. UWB
technology excels in indoor and urban environments, providing
high-precision distance measurements and robust anti-
interference capabilities. In contrast, IMU technology offers
attitude and motion information through the measurement and
integration of acceleration and angular velocity. By combining
UWB and IMU, we can leverage their respective strengths,
resulting in improved localization accuracy and robustness.

In a cooperative network, individual agents utilize inertial
devices to obtain position information and autonomously
establish ranging relationships with others within the wireless
network. Through the exchange of information, they collab-
oratively work towards optimizing the estimation of target
localization [4], [5]. This cooperative approach integrates per-
ceptual information collected by individual agents, fostering
information gain and effective communication among agents
in highly dynamic environments. The fusion of UWB and IMU
technologies empowers these agents to effectively collaborate,
enabling them to make informed decisions and take timely
actions in real-time rescue scenarios.

However, UWB/IMU cooperative localization still faces
several challenges and shortcomings that warrant further
attention. Firstly, the issue of initial localization proves to
be critical, particularly in scenarios lacking prior information
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or reference base stations [6]. Accurate initial localization is
imperative for subsequent cooperative localization algorithms
and overall system performance. Secondly, challenges related
to error accumulation between UWB and IMU, as well as
inconsistencies in error distribution among agents, need to be
addressed [7]. These issues necessitate optimization methods
to reduce cooperative errors and enhance positioning accuracy.

Numerous methods have been proposed to address the
challenges encountered in UWB/IMU cooperative localiza-
tion. Traditional approaches often rely on the classical
Kalman filter, which provides an optimal solution for
linear Gaussian problems and is commonly employed in
practical applications [8]. However, real-world problems
often exhibit nonlinear characteristics, necessitating the use
of nonlinear filtering methods, which are prevalent in
most real-world applications. Classic methods for tackling
nonlinear filtering problems include the Extended Kalman
Filter (EKF) [9], the Unscented Kalman Filter (UKF) [10], the
Complementary Filter (CF) [11], Particle Filters, and others.
Nevertheless, these methods have limitations in handling
complex and nonlinear error distributions, often leading to
high computational complexity. Therefore, there is a pressing
need for more efficient and accurate methods to address the
challenges in UWB/IMU cooperative localization.

However, the manually designed models and algorithms
mentioned above perform well under specific conditions but
lack reliability in complex and dynamic environments [12].
They are highly sensitive to initial state estimation and rely on
empirical selection, making it challenging to ensure accuracy.
Additionally, in complex unknown environments, the changing
noise distribution results in continuous alterations in the envi-
ronmental model structure, necessitating frequent adjustments
of the filter gain [13]. Without considering gain adjustment, the
estimation performance may converge slowly or even diverge,
leading to unsatisfactory localization outcomes when using the
EKF. To address these issues, machine learning techniques
have been employed, utilizing data-driven approaches to solve
attitude estimation problems [14], [15]. Supervised learning
methods such as Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) have shown promise in
pose estimation by modeling motion dynamics or extracting
general features. However, these methods are often limited to
specific environments and may struggle to converge without
prior experience [16].

An alternative approach, proposed by Morimoto and
Doya [17], involves using Reinforcement Learning (RL) to
estimate hidden variables and parameters in nonlinear dynamic
systems. However, there exists a substantial research gap
between RL and localization estimation, and training models
from scratch using RL methods can be inefficient and yield
suboptimal performance. To address this challenge, this study
introduces a novel approach that combines RL with EKF
to solve control application problems [18], [19]. The hybrid
method aims to leverage the strengths of both RL and EKF
to achieve more robust and efficient localization in complex
dynamic environments. This study considers the cooperative
localization problem from the perspective of Multi-Agents
based on Reinforcement Learning (MARL), with each agent

corresponding to a network edge. The study proposes
a new cooperative localization algorithm by combining
centralized learning and decentralized training (CTDE) of
multi-agent reinforcement learning with filtering methods.
This optimization aims to distribute overall positioning errors
more effectively among multiple agents. By employing this
approach, we seek to enhance cooperation and information
sharing among agents, ultimately leading to improved system
performance and positioning accuracy.

In summary, the main contributions are as follows:
1) We propose a local localization method that leverages

reinforcement learning compensation for the Extended
Kalman Filter (EKF). This study addresses the challenge
of unknown initial positions by employing reinforcement
learning to refine the EKF’s estimations. Through
reinforcement learning, the model is trained to acquire
compensatory filtering gain values, effectively rectifying
errors stemming from initial estimation.

2) We introduce a global cooperative localization
algorithm, MARL_CF, founded on the principles of
credit assignment. This algorithm utilizes distance
information between agents as input for the
reinforcement learning network. Through training
an optimization strategy with an Actor-Critic (AC)
network, the results of local localization are further
enhanced. The credit assignment network is responsible
for allocating the overall error within the multi-agent
system, effectively preventing the occurrence of
“laziness” among agents [20].

3) We meticulously train and evaluate the MARL_CF
algorithm, conducting experiments in both numerical
simulation scenarios and physical environments. These
experiments encompass diverse initial position ranges
and noise covariance settings, facilitating comparisons
and validations against state-of-the-art algorithms. The
results unequivocally demonstrate the algorithm’s effec-
tiveness.

The rest of this paper is organized as follows: Section II
presents the overall framework of proposed method, and
Section III and Section IV describe the local localization mod-
ule and global cooperative localization module, respectively.
Section V demonstrates the experiments and analysis. Finally,
Section VI concludes the paper.

II. SYSTEM FRAMEWORK

This section introduces the framework for Multi-Agent
Reinforcement Learning Compensated Filter (MARL_CF) in
the context of cooperative localization.

A. Problem Definition

The central issue tackled in this paper pertains to multi-
agent cooperative localization in intricate and unknown
environments. Considering a network of N agents, the position
of the agent i at time t is denoted as Xt,i. The overall
goal of this paper is to estimate the positions of all agents
within the network based on observational information, i.e.,
Xt = [Xt,1, Xt,2, .., Xt,N ]. For simplicity, we will ignore the
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Fig. 1. The framework diagram of our proposed cooperative localization
algorithm, MARL_CF.

subscript i in the case of not specifically referring to an agent,
and use Xt to represent the position of any agent, that is:

Xt = (xt, yt, ϕt) (1)

where xt and yt represent the x and y coordinate at time t, and
ϕt represents the heading angle at time t. The measurements
obtained using the IMU sensor are defined as follows:

µt = (ϑt, ϕt) (2)

where ϑt and ϕt represent the linear acceleration and angular
velocity of the IMU, respectively. The measurements of the
agent is represented as follows:

Zt = (dt, θt, C) (3)

where dt represents the straight-line distance between adjacent
agents, θt represents the relative heading angle, and C
represents the correspondence between adjacent agents.

B. Algorithm Framework

Noise and the ever-changing environmental conditions
introduce errors when individual agents utilize the EKF
filtering algorithm, which, in turn, leads to subpar localization
performance. Furthermore, credit assignment problems can
arise among multiple agents. In response to these challenges,
we integrate MARL with filtering techniques to implement
MARL corrections within the context of EKF localization. The
framework comprises both a local localization and a global
optimization module, illustrated in Fig. 1.

1) Local Localization Module: This module comprises
Extended Kalman Filtering and single-agent reinforcement
learning algorithms. It utilizes data from IMU and UWB
sensors for Extended Kalman Filtering localization. Subse-
quently, reinforcement learning comes into play to train the
compensatory Kalman gain matrix, yielding local localization
results for each agent. The reinforcement learning network
takes the residual observation of each agent as input, trains the
compensatory Kalman gain matrix to rectify initial estimation
errors, and thereby enhances localization accuracy.

2) Global Optimization Module: This module involves
collaboration and information sharing among multiple agents
to further improve their localization accuracy and obtain the
global estimates. It includes the actor networks of each agent,
a shared critic network, and the MARL correction module.
During the training process, all agents share a joint critic
network (central controller), but each agent has its own actor
network (policy network). During the testing and execution
process, each agent only needs to input its observation
information ot to the policy network, which outputs an action
value at based on the policy π(ot). This action value is used to
optimize the local localization result, obtaining the final global
estimation.

III. LOCAL LOCALIZATION OPTIMIZATION

This section demonstrates how we harness reinforcement
learning to compensate for the Extended Kalman Filter (EKF).
The fundamental structure is depicted in Fig. 2.

A. EKF for Local Localization

Throughout the motion process, each agent initiates by
updating and propagating its individual state according to
its motion model. Subsequently, it acquires observation
values from neighboring agents through communication. The
disparity between the observed and actual values is then
utilized to refine the agent’s localization estimate, resulting
in a continuous reduction of errors and a gradual convergence
towards the true position.

1) State Update: The IMU sensor furnishes the agent
with motion-related information based on the initial position.
Employing linear acceleration and angular velocity, in con-
junction with the position information from the previous time
step denoted as Xt−1, predictions are made to obtain the prior
estimate of the current position X̄t and covariance matrix P̄t.
The motion model for updating the agent using IMU sensor
data can be summarized as follows:

X̄t = f(ut, xt−1) = Xt−1 +

ϑt∆t cos(θ + ωt∆t
2 )

ϑt∆t sin(θ + ωt∆t
2 )

ωt∆t

 (4)

P̄t = Ft−1Pt−1F
T
t−1 + Qt−1 (5)

Here, ut = (ϑt, ωt) represents the inputs, encompassing linear
acceleration and angular velocity data from the IMU. These
inputs inherently include noise values, assumed to follow
an uncorrelated Gaussian white noise distribution. Here, Q
represents the process noise covariance matrix. Furthermore,
Ft−1 denotes the linearized function of f(Xt−1), implemented
utilizing the Jacobian matrix:

Ft−1 =
∂f(ut, xt−1)

∂xt−1
=

1 0 − ϑt∆t sin
(
θ + ωt∆t

2

)
0 1 ϑt∆t cos

(
θ + ωt∆t

2

)
0 0 1


(6)
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Fig. 2. The framework diagram of reinforment learning compesated EKF
for local localization.

2) Measurement Update: Following the state update, the
accumulation of IMU errors invariably results in an increase
in the agent’s state uncertainty. Within this framework, each
agent’s measurements are presented in the form of distance
and direction. The measurement can be expressed as Zt =
(dt, θt, C), where dt signifies the Euclidean distance between
adjacent agents, θt represents the relative bearing angle, and C
indicates the correspondence between this measurement value
and a specific neighbour. In this study, we ultimately select
the most nearest three neighbours’ (if any) observations as
inputs. The measurement update process proceeds iterately
using measurement collected from each adjacent as follows:

X̃t = X̄t + Kt(Zt − Z̄t) (7)
Z̄t = h(X̄t) (8)

Kt = P̄tH
T
t (HtP̄tH

T
t + Rt)−1 (9)

P̃ = (I −KtHt)P̄t (10)

In this context, Rt signifies the covariance matrix, Zt denotes
the practical measurement data at time t, and Z̄t represents
the predicted measurement value. Employing the measurement
model, the current position estimate X̄t is translated into
the corresponding distance and direction measurements,
essentially generating measurement predictions, as described
by the measurement function:

Z̄t = h(xt, m) =

 dj

atan2(mj,y − X̄t,y, mj,x − X̄t,x)− X̄t,ϕ

mj,s


(11)

d2
j = (mj,x − X̄t,x)2 + (mj,y − X̄t,y)2 (12)

where mj,x, mj,y and mj,s correspond to the current x, y
estimates, and the identifier of neighbor agent j, respectively.
It is worth mentioning that the absolute coordinates of the
neighbor agent are unknown, and only its coordinate estimates
are used as inputs to the current measurement equation to
obtain estimates of the pratical measurements. Ht takes on
the role of the observation model matrix, being the Jacobian
matrix of the nonlinear measurement function h(· ), as follows:

Hi
t =

∂h(X̄t, m)
∂xt

=
1
q

dδx − dδy 0
δy δx − 1
0 0 0

 (13)

δ =
[
δx

δy

]
=

[
mj,x − X̄t,x

mj,y − X̄t,y

]
(14)

Fig. 3. MLP network structure diagram.

During the measurement process, the agent measures and
computes the Euclidean distance between neighbors and the
difference in yaw angles to construct the model predicted
value Z̄t. Following this, the measurement prediction value
is juxtaposed with the actual sensor observation Zt.

B. RL Compensation

In this section, we delve into the relationship between
reinforcement learning (RL) and the Extended Kalman
Filter (EKF), and establish a Bayesian filter using Deep
Reinforcement Learning (DRL). Initially, we represent EKF
as a dynamic Markov Decision Process (MDP), and align the
variables in the reinforcement learning environment with the
components of EKF. This approach allows us to utilize DRL
techniques to enhance the performance of EKF, enabling it to
better adapt to uncertainty and complex environments.

1) MLP: Within the realm of DRL, deep neural networks
(DNNs) are frequently employed as approximators for policy
and value functions. In this paper, the Proximal Policy
Optimization (PPO) algorithm [21] is utilized, where both
the actor and critic components are constructed using fully
connected Multi-Layer Perceptrons (MLPs) with Rectified
Linear Unit (ReLU) activation functions. Unlike structures
such as Long Short-Term Memory (LSTM) and Convolutional
Neural Network (CNN), our problem involves continuous
state and action spaces, making MLP the preferred network
architecture. A typical MLP comprises three layers: input,
hidden, and output. Each layer’s neurons are interconnected
with the previous and subsequent layers, receiving input from
the previous layer, and transmitting it to the next layer. The
impact of inputs is adjusted through weight tuning, and the
sum is transformed into outputs via activation functions. The
overall structure is illustrated in Fig. 3.

Regarding the policy network, the architecture of MLP
relies on the dimensions of the input and output vectors,
which correspond to the state and action sizes, respectively.
The selection of the hidden layer size should align with the
complexity of the problem at hand. In this paper, we employ
an MLP with two hidden layers, which can be expressed
mathematically as follows:

z = MLP 2
w(x) = w2 [f (w1 [f (w0(x + b0)) + b1]) + b2]

(15)

Here, x denotes the input state, [w0, w1, w2] symbolizes the
weights assigned to each layer, and f(· ) signifies the ReLU
activation function, which is applied following each layer.
ReLU, an activation function expressed as f(x) = x+ =
max(0, x), offers benefits during the backpropagation process.
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2) Reinforcement Learning Filter: The ultimate EKF update
can be formulated in the framework of MDP as follows:

x̂t+1 = f(x̄t) + Kt(zt+1 − h(f(x̂t)) (16)
x̃t+1 ∼ P(x̃t+1|x̃t, zt+1, Kt), ∀t ∈ Z+ (17)

where h(·) indicates the estimated measurements. In the
subsequent time step, the state solely depends on the current
state x̃t, the measurement zt+1, and the Kalman gain Kt.
Within the context of EKF, the Kalman gain is calculated
based on the measurement innovation, which signifies the
distinction between the true state x and the estimated state
x̃t. During the offline training process of DRL, assuming
that the true state x is known, the mapping from x̃t to Kt

can be represented as a nonlinear function. This nonlinear
mapping function, considered as the reinforcement learning
policy π, and the Kalman gain K as the reinforcement learning
action, are utilized to train a compensatory gain value through
reinforcement learning. The structure of RL state estimator in
MDP tuple < S,A, P, R, γ > is presented as follows:
• State: x̃t ∈ S signifies the system transition probability
P(x̃t+1|x̃t, a(x̂t)) ∈ P , with a(·) representing the action
value that corresponds to compensation gain of the filter.

• Action: A is a matrix representing the network’s output,
with values within the range of [−0.1, 0.1]. This action
matrix combines the residuals of observed and model-
predicted data to correct the localization estimate.

• Reward R: It quantifies the value of the action-state
pair. This paper employs the mean squared error (MSE)
between the true and estimated positions for this purpose.
To clarify, in the context of our work, “true position”
refers to the position used as a reference in the simulation
environment for the purpose of training and evaluating
our algorithm. It is not known to the localization
algorithm itself but is used to compute the error metrics
such as the mean squared error (MSE) for the training
process.

• Policy π(at, xt): It employs the MLP approximator to
map the estimated state to the compensation gain (action).

3) Reinforcement Learning Compensation: The number of
measurement values obtained at each time step dynamically
changes. Since the action space and observation input of
the reinforcement learning network must have fixed sizes for
computational convenience and consistency, this study opts to
use the three closest pieces of observed information within
the observation range as input to the reinforcement learning
network. Additionally, it considers the Kalman gain value
KRL

t as the output of the reinforcement learning action.
For clarity, the EKF estimation result X̃t from the previous

section is denoted as XEKF
t , and the reinforcement learning

compensation result is denoted as XRL
t . These representations

signify the final outcomes of the local localization process
for each agent. The process of reinforcement learning
compensation can be described as follows:

XRL
t = XEKF

t + εRL
t (18)

εRL
t = KRL

t (Zt − Z̄RL
t ) (19)

εRL
t ∼ ρ(εRL

t |εRL
t−1, K

RL
t ) (20)

where KRL
t ∈ A represents the compensation gain of the filter

and serves as the output of the reinforcement learning network.
The reward function for the network is defined as follows:

R =
√

(xGT −XRL
t,x)2 + (yGT −XRL

t,y)2 (21)

With this, a local localization framework based on the
combination of reinforcement learning and filtering has been
established, as depicted in Algorithm 1.

Algorithm 1 Local Localization Algorithm
Input: IMU measurement data ut, UWB observation data

Zt, true position XGT = {XGT ,YGT }, initial estimated
position X0 ∼ N .

Output: Local localization estimate XRL
t

1: Initialize the system state values and covariance matrix
P0

2: for t = 1, . . . , T do
3: EKF Correction:
4: Prediction Update: Use ut to predict the location X̄t

and covariance matrix P̄t based on formulas (4) and (5)
5: Measurement Update: Utilize Zt for measurement

update. Calculate the Kalman gain Kt using formula (9)
6: Update the localization result X̃t and covariance

matrix P̃t based on formulas (7) and (10)
7: RL Compensation Correction:
8: Based on the previous error εRL

t−1, obtain the
compensation gain matrix KRL

t using the RL policy
network

9: Calculate the current error state εRL
t using for-

mula (19) and compensate the current error value to the
localization result X̃t

10: Update the local localization result XRL
t using

formula (18)
11: end for

IV. MULTI-AGENT GLOBAL LOCALIZATION

The primary objective of this section is to rectify local
estimates by incorporating global data information. In multi-
agent reinforcement learning methods, there exists a challenge
known as the credit assignment problem, stemming from
partial observability. In the context of multi-agent global
localization, we tackle this credit assignment problem by
attributing errors to specific local errors from a global
localization perspective.

A. Credit Assignment

We initially introduce a global cooperative localization
algorithm based on COMA [22], employing a centralized
training and distributed execution (CTDE) structure. This
algorithm leverages observation data and policy training
among agents to learn from communication observations and
the residuals of actual distances and orientations between
agents, ultimately optimizing local estimates. The aim of this
algorithm is to acquire an action value that fine-tunes the local
localization result when executed, bringing it closer to the
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Fig. 4. Credit assignment network: (a) the centralized network structure of
credit assignment algorithms, and the network structure of (b) Actors and
(c) Critics.

true value. The components of the multi-agent reinforcement
learning in this paper are defined as follows:
• Observations (O), encompasses the localization residuals

of the current agent with respect to others. Local
observations serve as input to each agent’s actor network,
while global observations serve as input to the centralized
critic.

• Action (A), is defined as a discrete space consisting of
eight action values to adjust current agent’s orientations.

• Reward (R), represents the global reward function,
which is inversely proportional to the localization error.
A higher reward corresponds to better localization
performance. Here, γ denotes the discount factor,
given by:

Rt =
∞∑

l=0

γlrt+l (22)

To address the credit assignment challenge in multi-agent
cooperation, the “counterfactual baseline” method takes center
stage in calculating advantage values for each agent within the
context of the Actor-Critic (AC) framework’s CTDE mode.
The comprehensive network structure is visualized in Fig. 4.

Each agent possesses its own policy network, essentially
implemented as a Recurrent Neural Network (RNN). At each
time step, an agent utilizes its local observations as input and
employs its policy network to select an action denoted as ui.
By aggregating the action values from all agents, a collective
action is derived. Additionally, all agents share a common
critic network, referred to as the Q-network. This network is
responsible for computing the action-value function for each
agent, thereby approximating the global reward. The individual
reward Da is subsequently employed to iteratively refine the
agent’s policy network, enhancing its action selection.

Da = r(s, u)− r(s, (u−a, ca)) (23)

In this context, Da can be interpreted as a measure of
how much better or worse if an action u is taken by agent a
when compared to the default action ca. During the subsequent
training phase, agents will strive to maximize the value of Da,
indicating their aim to optimize the global reward. Here, u−a

denotes the collective action without the contribution of agent
a, and (u−a, ca) signifies the collective action with agent a
taking the default action.

To calculate Da for all actions, one would traditionally
replace each action with the default one and interact with
the environment to determine the corresponding utility values.

Algorithm 2 Multi-Agent Reinforcement Learning Credit
Assignment Algorithm

Input: Network parameters θc, θc′
, θπ , discount factor γ,

maximum number of iterations T , learning rate α, number
of training episodes M

Output: Optimal evaluation network parameters θc, policy
network parameters θπ

1: Initialize parameters and experience replay memory M
2: for episode ← 1 to M do
3: for t = 1, · · · , T do
4: for i = 1, · · · , N do
5: Use Actor network to get the probability of

each action, and select ai = πi(oi) according to the policy
6: end for
7: Execute joint action u to obtain global reward Rt

and next observation o′t
8: Store (o⃗t, a⃗t, r, o⃗

′
t) in M

9: end for
10: for t = 1, · · · , T do
11: Sample data from M for parameter updates
12: Compute the loss function for the Critic network

using formula (26) and (27), and update parameters θc
t =

θc
t + α∇θc

13: Compute the policy gradient for the Actor network
using formula (29) and update parameters θπ

t+1 = θπ
t +

α∇θπ

14: Update Critic parameters θc′
using formula (28)

15: end for
16: end for

However, this approach poses two challenges: it demands
extensive computations, significantly increasing computational
complexity, and it doesn’t provide a straightforward way
to designate which action should serve as the default.
Consequently, this paper introduces an approximate method
that estimates the average utility value of all actions an agent
can take using the utility value obtained when taking the
default action. This can be expressed as:

r(s, (u−a, ca)) = Q(s, ca) =
∑
u′a

πa(u
′a|τa)Q(s, (u−a, u

′a))

(24)

Subsequently, the computation of Da can be equivalently
expressed as Ra(s, u), which is given by:

Ra(s, u) = Q(s, u)−
∑
u′a

πa(u
′a|τa)Q(s, (u−a, u

′a)) (25)

B. Parameter Updates

In the MARL_CF network, updates to the centralized critic
network (Q-network) are carried out using the TD(λ) [23].
In particular, the critic parameters θc are updated by minibatch
gradient descent to minimise the following equation:

∇θc = (κ(λ) − fθc

(·))2 (26)
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κ(λ) = (1− λ)
∞∑

n=1

λn−1G
(n)
t =

n∑
l=1

γl−1rt+l + γnfθc

(·)

(27)

where G
(n)
t is a mixture of n-step returns. The parameter

update for the target critic network can be represented as:

θc′
= ιθc + (1− ι)θc′

(28)

where ι is learning rate. The policy network of each agent is
updated based on the policy gradient, namely

∇θπ = ∇θπ
log π(u|τa

t ) ·Ra(s, u) (29)

where τa
t indicates the agent’s own action-observation history.

The entire workflow of the credit assignment network in the
MARL_CF is depicted in Algorithm 2.

C. Error Correction

We employ a global cooperative localization method based
on multi-agent reinforcement learning to refine the local
localization outcomes XRL

t and derive enhanced estimation
results XMARL

t . These results represent the agent’s final
position estimate at time t and are described as follows:

XMARL
t = XRL

t + at ∗ D (30)

where at ∈ A denotes the action value provided by the
MARL_CF algorithm, signifying the adjustment direction,
while D represents the adjustment displacement value.

The entire training process of the proposed MARL_CF
algorithm is delineated in Algorithm 3. It commences with
the initialization of the environment and network parameters
for reinforcement learning. Input data encompasses IMU
measurements, UWB observations, and the true positions of
each agent. Subsequently, sensor data undergoes processing
via the local localization method to yield local estimates,
as illustrated in Algorithm 1. Following this, the current
observation information ot for each agent is acquired and
fed into their policy networks to determine actions at. These
actions contribute to the calculation of the global localization
estimate, representing the final localization value.

Following the estimation phase, new observations o′t and
the global reward r are obtained, and this data (o⃗t, a⃗t, r, o⃗t

′)
is stored in the experience replay memory. Subsequently,
the global localization network parameters in the MARL_CF
algorithm receive updates using the reward value r. This
iterative process continues until the most effective strategies
for this scenario are learned.

V. EXPERIMENT AND ANALYSIS

This section is dedicated to validating the effectiveness
of the MARL_CF algorithm through concrete experiments.
To achieve this, we will begin by introducing the experimental
environment and parameter settings utilized for evaluation
purposes. Following that, we will perform a statistical analysis
of the algorithm’s performance and validate its effectiveness
under varying experimental conditions. Furthermore, we will
conduct a comparative assessment between MARL_CF and

Algorithm 3 Cooperative Localization Algorithm Based on
Reinforcement Learning Compensated Filtering (MARL_CF)
Input: MARL_CF network parameters, maximum iteration

rounds T , number of training rounds M , number of agents
N , IMU measurement data ut, UWB observation data Zt,
true positions XGT = XGT ,YGT

Output: Corrected final localization estimate XMARL
t

1: for round_number ← 1, · · · , M do
2: Initialize environment and network parameters
3: Obtain initial observations for each agent
4: for t = 1, · · · , T do
5: for i = 1, · · · , N do
6: Utilize Algorithm 2 with ut,i and Zt,i to

perform local localization estimation with EKF followed
by RL compensation, obtaining localization result XRL

t,i

7: end for
8: Calculate the localization residuals of each agent,

distances, and angles with respect to other agents as
observation information o

9: for i = 1, · · · , N do
10: Obtain action value ai = πi(oi) for agent i

using Algorithm 2, and execute the action
11: Perform global localization correction:

XMARL
t,i = XRL

t,i + ai ∗ D
12: end for
13: end for
14: end for

other state-of-the-art methods to underscore its advantages.
Additionally, we will conduct ablation experiments to
showcase the effectiveness of different components within
the MARL_CF framework. Lastly, field experiments will be
carried out to provide further validation of the proposed
method.

A. Environment and Parameter Settings

In the simulation phase, the hardware configuration of the
personal computer comprises a 6-core Intel i7 CPU and 16 GB
of RAM, running on a 64-bit Windows 10 operating system.
The experimental arena is configured as a square area
measuring 30m × 30m, housing 20 stationary agents. These
stationary agents are designed to accelerate the training
model’s convergence. It’s worth mentioning that these nodes
do not share their actual coordinates with other agents; their
only difference from others is that they do not engage in
random/regulated motion. This environment involves four
moving agents, each operating independently while observing
pertinent information from others. To introduce diversity into
the training process, the positions of stationary agents are
randomly generated, wherein agents traverse distinct paths.
The input data for each agent encompasses forward linear
velocity and angular velocity at each time step:

ut = ūt + et =
(

v̄t + vt

ω̄t + ωt

)
(31)

where v̄t = 0.5 m/s represents the true forward linear velocity,
and ω̄t ∈ (−1, 1) rad/s the true angular velocity. The
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TABLE I
EXPERIMENTAL PARAMETER SETTINGS FOR MARL_CF

TABLE II
PPO2 PARAMETER SETTINGS

process noise eu ∼ N (0, Rm), where Rm =
[
1 0
0 0.1745

]
,

represents the Gaussian noise. The measurement for each agent
includes the relative distance and angle between the sensors
at this agent and others at each time step:

Z̄t =
[ √

(mj,x − X̄t,x)2 + (mj,y − X̄t,y)2
atan2(mj,y − X̄t,y, mj,x − X̄t,x)− X̄t,θ

]
+ et,z

(32)

where eu ∼ N (0, Qm) and Qm =
[
0.2 0
0 0.01745

]
represents

Gaussian noise added to the measurements.
The simulation experiment encompasses two motion

scenarios: regular motion and random walk. In the regular
motion model, four agents move in a diagonal formation,
converging toward the center at a 45-degree angle. Conversely,
in the random walk scenario, the initial positions x0 = (x0, y0)
and heading angles θ0 for each agent are configured before
each experiment. At each step, the direction of movement
is randomly chosen, while the velocity remains constant.
This random movement persists for 300 steps within a
two-dimensional environment. Throughout this process, the
agents execute actions and collect environmental observations,
facilitating continuous updates to their positions.

For the MARL_CF algorithm, we set the number of
iterations to 500 episodes, and the network and training
parameters are specified as presented in Table I. The local
localization method utilizes Proximal Policy Optimization
(PPO2) reinforcement learning [24], with the network
parameters detailed in Table II.

Fig. 5. The training loss of MARL_CF.

B. Model Training Performance

In the model training phase, we conducted 500 episodes of
iterations, with each episode spanning 300 time steps. Fig. 5
depicts the training loss curve for MARL_CF, where the goal
is to achieve larger rewards and smaller loss values. The loss
curve reveals a gradual reduction in the overall loss value over
time, with a notably significant drop in the first 50 episodes.
Around the 100th episode, the loss value stabilizes. In the
context of reinforcement learning, smaller loss values indicate
that the current policy selection becomes more rational and
accurate. Additionally, it suggests that the network’s structure
and parameter settings are apt, enabling swift convergence and
enhancing the accuracy of the agent’s localization estimates.

C. Performance Under Different Parameter Settings

To assess the performance of the MARL_CF algorithm
under various experimental conditions, this subsection
employs the controlled variable method to analyze the
influence of initial position errors and model covariance
settings on localization outcomes. Furthermore, we conducted
a comparative evaluation of the MARL_CF algorithm against
other state-of-the-art methods, including the Extended Kalman
Filter (EKF) [9], Dead Reckoning (DR) [25], and Particle
Filter (PF) [26].

1) Impact of Initial Position Errors: To further examine
the influence of initial estimation errors on the MARL_CF
algorithm, this section conducted tests in four distinct initial
estimation error ranges: [−3, 3], [−5, 5], [−8, 8], and
[−10, 10]. The experimental results are presented in Table III.
The mean squared error (MSE) for multi-agent collaborative
localization in the experimental results can be defined as
follows:

RMSE =
1
M

M∑
i=1

 1
N

N∑
j=1

√
e2

 (33)

The findings reveal that the MARL_CF algorithm con-
sistently outperforms the EKF, DR, and PF algorithms
by producing smaller localization errors, regardless of the
initial estimation range. As the initial estimation error range
increases, all algorithms exhibit a gradual rise in localization
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TABLE III
MEAN SQUARED ERRORS OF VARIOUS ALGORITHMS UNDER

DIFFERENT INITIAL ESTIMATE RANGES

Fig. 6. Mean squared error (MSE) curves of algorithms under different noise
covariances. In (a)-(d), the noise covariance matrices are set to 0.5, 1, 2, and
4 times their original values.

TABLE IV
MEAN SQUARED ERRORS OF VARIOUS ALGORITHMS UNDER

DIFFERENT NOISE COVARIANCES

errors. However, the MARL_CF demonstrates the most modest
increase in errors, highlighting its effectiveness in mitigating
initial estimation errors. It is crucial to avoid an excessively
large initial estimation range, as it could exceed the observable
range of sensors, rendering it irrelevant as a reference.

In conclusion, the experimental results consistently demon-
strate that the MARL_CF algorithm achieves smaller
localization errors under different initial estimation ranges and
outperforms other algorithms, including EKF, DR, and PF,
as shown in Table III.

2) Impact of Noise Covariance: The localization perfor-
mance of the algorithm is influenced by the noise levels in
both the input data and measurement data, as reflected in
the noise covariance matrices Q and R. This section aims to
investigate how the algorithm’s performance is impacted by
these covariance matrices. To maintain variable uniqueness,
we fix the initial estimation range at [−5, 5]. To analyze the

Fig. 7. Localized RL ablation experiment: (a)cumulative distribution error,
and (b) error variation in time sequence.

impact of noise covariance matrices, we adjust their values
based on the findings from Section V-C, setting them to 0.5,
1, 2, and 4 times their original values. The experimental results
are presented in Fig. 6 and Table IV.

The results demonstrate that as the noise covariance
values increase, the localization errors also increase. However,
the MARL_CF algorithm exhibits better performance in
handling increased noise uncertainty, as it allows more room
for compensation. In comparison to other algorithms, the
MARL_CF algorithm is the least sensitive to changes in noise
covariance. This advantage is evident in Fig. 6, which displays
the cumulative error distribution curves of different algorithms
under varying covariance matrices. The MARL_CF algorithm
shows a higher probability of achieving localization within
a smaller error range. In summary, the experimental results
highlight that increasing noise covariance leads to higher
localization errors. Nonetheless, the MARL_CF algorithm
remains robust in the face of noise, achieving higher
localization accuracy within a smaller error range.

D. Ablation Experiments

To verify the effectiveness of the local localization module
and the global cooperative localization module proposed in
the MARL_CF algorithm, this section focuses on discussing
ablation experiments for both RL local localization and MARL
global cooperative localization.

1) RL Local Localization Ablation: This section analyzes
the localization results of three algorithms: the Extended
Kalman Filter (EKF), the local compensation localiza-
tion (RL_CF), and the multi-agent cooperative localization
(MARL_CF). The experimental results are presented in
Fig. 7-(a). Within a localization error of 0.5m, the probability
distribution of EKF localization is 69.7%, while RL_CF
localization has a probability of 77.6%, and MARL_CF
localization has a probability of 93.3%. The local localization
module improves accuracy, increasing the probability by
11.3% compared to EKF, and the MARL_CF further increases
it by 20.2%, demonstrating the significant advantage of the
global cooperative localization algorithm in reducing errors.
Additionally, Fig. 7-(b) illustrates that the RL_CF method
achieves smaller localization errors at each time step compared
to EKF, converging at around 90 steps. On the other hand, the
MARL_CF reaches convergence at around 50 steps.

In conclusion, the experimental results highlight the
effectiveness of both the local compensation localization
module and the global cooperative localization algorithm in
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Fig. 8. Global positioning MARL ablation experiment: (a) cumulative
distribution error, and (b) error variation in time sequence.

reducing localization errors. Notably, the multi-agent global
cooperative localization module has a more substantial impact
on error reduction compared to the local localization module.

2) Global Localization Ablation: To validate the effec-
tiveness of the credit assignment-based global cooperative
localization algorithm, this section conducted a comparative
experiment with the Extended Kalman Filter (EKF) algorithm
and other multi-agent reinforcement learning algorithms based
on credit assignment, including the Value Decomposition
Networks (VDN) [27] and the QMIX [28]. The experimental
results are shown in Fig. 8-(a) and Fig. 8-(b). In the
comparison, the EKF algorithm achieved a localization
error of 0.87m, while the MARL_CF, VDN, and QMIX
algorithms achieved localization errors of 0.33m, 0.52m,
and 0.42m, respectively. It is evident that the MARL_CF
algorithm outperforms the VDN and QMIX algorithms,
achieving higher localization accuracy by 36.5% and 21.4%,
respectively. Additionally, the MARL_CF exhibits slightly
faster convergence speed.

In conclusion, the experimental results show that the credit
assignment-based global cooperative localization algorithm
(MARL_CF) has significant advantages in localization tasks.
Compared to other algorithms (EKF, VDN, and QMIX), the
MARL_CF algorithm not only provides higher localization
accuracy but also exhibits faster convergence speed.

Based on the two sets of experimental analyses above,
it is evident that the MARL_CF algorithm effectively reduces
localization errors. Both the local localization module and
the credit assignment-based global cooperative localization
module contribute positively to reducing localization errors.
By integrating both the local localization module and
the global cooperative localization module, the MARL_CF
algorithm demonstrates remarkable capability in reducing
localization errors and enhancing precision. Especially, the
multi-agent global cooperative localization module performs
better in reducing localization errors compared to the local
module.

E. Physical Experiments

To verify the effectiveness of the proposed MARL_CF,
we deployed four auto-robots [29] in a physical field
measuring 10m × 10m, as depicted in Fig. 9. Noted that
the arena size of the physical filed is different from that
used in the simulation due to the limitations of the motion
capture system requirements and room space. Simulations
offer the flexibility to explore larger and more complex

Fig. 9. Left: The scene for physical experiment. Right: The auto-robot and
sensors used for the test.

environments without the physical and logistical constraints
present in real-world settings. In contrast, physical experiments
provide essential validation of the algorithm’s efficacy in real
environments, albeit on a smaller scale. This dual approach
ensures a balanced assessment, capturing both the theoretical
robustness and practical applicability of the proposed solution.
These robots operated in two modes: random walk and regular
motion, for a duration of 100 seconds each. Ground truth
data was captured using the NOKOV optics motion tracking
system [30]. Subsequently, the trajectory and localization
errors of the agents were analyzed to evaluate the algorithm’s
performance.

1) Random Walk Scenario: In this scenario, four agents
are deployed, and they start moving randomly in different
directions from unknown random initial positions. Fig. 10-(a)
shows the localization results of the four agents. It can be
observed that with the MARL_CF, each agent can quickly
converge to the true trajectory when the initial positions
are unknown. Furthermore, Fig. 10-(b) shows the cumulative
distribution of localization errors for each agent, which
indicates that each agent has a probability of over 80% to
reduce the localization error within 0.5 meters. From the
above-mentioned two figures, it can be concluded that the
MARL_CF demonstrates higher accuracy and robustness in
multi-agent localization. Even in situations where the initial
positions are unknown, the agents can quickly converge to the
correct trajectory, and the error remains within a small range.

2) Regular Motion Scenario: In this experiment, four
agents initiate from the corners of a rectangular structure
and converge toward the center at a 45◦ angle. The
localization results are illustrated in Fig. 11-(a) and Fig. 11-(b).
Notably, in the scenario of regular motion, the localization
errors for each agent are considerably smaller compared
to those observed in the random walk scenario. To be
specific, each agent exhibits a probability of over 85% to
reduce localization errors within a 0.5-meter range. This
underscores the significance of a regular topological structure
among the agents’ movements, which notably contributes to
enhanced localization accuracy. Predictable relative positions
and relationships between agents facilitate better cooperation,
resulting in improved precision.

In summary, these experimental outcomes demonstrate
that in multi-agent environments characterized by a regular
topological structure, cooperative localization achieves higher
accuracy. These findings offer valuable insights for the further
comprehension and optimization of multi-agent cooperative
localization algorithms. Moreover, we conducted an exhaustive
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Fig. 10. (a) The path of various agents’ trajectories and (b) the cumulative
distribution function (CDF) of each agent’s localization errors in random walk
scenario.

Fig. 11. (a) The path of various agents’ trajectories and (b) the cumulative
distribution function (CDF) of each agent’s localization errors in regular
motion scenario.

Fig. 12. Cumulative distribution function (CDF) curves of mean squared
error (MSE) in physical environment test.

analysis of the agents’ trajectory paths and cumulative
distribution functions depicting localization errors for various
algorithms, including the Extended Kalman Filter (EKF) [9],
Dead Reckoning (DR) [25], and Particle Filter (PF) [26]. The
trajectory errors of these algorithms are visually presented in
Fig. 12, aligning with the simulation results and reaffirming the
superior performance of our proposed MARL_CF algorithm
when compared to state-of-the-art methods.

VI. CONCLUSION AND PERSPECTIVE

This paper presents a novel multi-agent collaborative
localization algorithm that integrates reinforcement learning
and filter correction to address challenges encountered by
traditional filtering algorithms. These challenges include
sensitivity to initial estimates and adaptability to dynamic
environments. The algorithm introduces two methodologies:
local localization and global cooperative localization, both
aimed at enhancing localization accuracy.

The local localization method utilizes a reinforcement
learning-based compensatory Extended Kalman Filter (EKF)
algorithm to reduce localization errors. By leveraging rein-
forcement learning, the EKF algorithm undergoes correction
to eliminate errors stemming from initial estimates. Con-
versely, the global cooperative localization method employs
a multi-agent reinforcement learning algorithm based on
credit assignment (MARL_CF). This algorithm facilitates
information sharing among agents and optimizes overall
localization errors through value function decomposition.
Agents’ policies are refined using an Actor-Critic (AC)
network to enhance local localization results. Additionally, the
credit assignment network mitigates imbalances among agents,
effectively minimizing overall localization errors.

Through simulation and physical experiments conducted
within a proposed scenario, the MARL_CF algorithm under-
goes comprehensive evaluation under various conditions. The
results unequivocally demonstrate its significant superiority
over the EKF, DR, and PF algorithms, resulting in enhanced
localization accuracy within the localization estimation task.

In conclusion, this study introduces reinforcement learning
and cooperative localization techniques, giving rise to the
development of local localization and global cooperative
localization methods. These methodologies effectively bolster
multi-agent localization accuracy. These research findings
robustly advocate for the application of localization technology
in navigation and autonomous driving fields, while also
indicating promising avenues for further research and devel-
opment. Looking ahead, we are committed to advancing our
research by refining our reward structure to incorporate more
sophisticated mechanisms of reinforcement learning, such as
improved credit assignment algorithms. Such enhancements
are designed to optimize the performance of our localization
system further, by more efficiently allocating rewards to
actions that substantially enhance accuracy and robustness.
These future efforts aim to push the boundaries of what
our localization technologies can achieve, continuing to drive
innovation in the field.
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