
1630 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Toward Materials Genome Big-Data: A
Blockchain-Based Secure Storage and

Efficient Retrieval Method
Ran Wang , Graduate Student Member, IEEE, Cheng Xu , Member, IEEE,

and Xiaotong Zhang , Senior Member, IEEE

Abstract—With the advent of the era of data-driven material
R&D, more and more countries have begun to build material Big
Data sharing platforms to support the design and R&D of new
materials. In the application process of material Big Data sharing
platforms, storage and retrieval are the basis of resource mining
and analysis. However, achieving efficient storage and recovery
is not accessible due to the multimodality, isomerization, discrete
and other characteristics of material data. At the same time, due
to the lack of security mechanisms, how to ensure the integrity
and reliability of the original data is also a significant problem
faced by researchers. Given these issues, this paper proposes a
blockchain-based secure storage and efficient retrieval scheme.
Introducing the Improved Merkle Tree (MMT) structure into the
block, the transaction data on the chain and the original data in the
off-chain cloud are mapped through the material data template.
Experimental results show that our proposed MMT structure has
no significant impact on the block creation efficiency while improv-
ing the retrieval efficiency. At the same time, MMT is superior to
state-of-the-art retrieval methods in terms of efficiency, especially
regarding range retrieval. The method proposed in this paper is
more suitable for the application needs of the material Big Data
sharing platform, and the retrieval efficiency has also been signifi-
cantly improved.

Index Terms—Materials genome big-data, multi-source hetero-
geneous data, data storage, data retrieval, blockchain, merkle tree.

Manuscript received 16 December 2022; revised 19 April 2023; accepted 6
July 2024. Date of publication 10 July 2024; date of current version 25 July 2024.
This work was supported in part by the National Key Research and Development
Program of China under Grant 2021YFB3702403, in part by the National
Natural Science Foundation of China (NSFC) under Grant 62101029, and in
part by China Scholarship Council Award under Grant 202006465043 and Grant
202306460078. Recommended for acceptance by M. Fazio. (Corresponding
authors: Cheng Xu; Xiaotong Zhang.)

Ran Wang is with the School of Computer and Communication Engineering,
Shunde Innovation School, University of Science and Technology Beijing,
Beijing 100083, China, and also with the School of Computer Science and
Engineering, Nanyang Technological University, Singapore 639798 (e-mail:
wangran423@foxmail.com).

Cheng Xu is with the School of Computer and Communication Engineering,
Shunde Innovation School, University of Science and Technology Beijing,
Beijing 100083, China, and also with the School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore 639798 (e-mail:
xucheng@ustb.edu.cn).

Xiaotong Zhang is with the School of Computer and Communication En-
gineering, Shunde Innovation School, University of Science and Technology
Beijing, Beijing 100083, China (e-mail: zxt@ies.ustb.edu.cn).

Digital Object Identifier 10.1109/TPDS.2024.3426275

I. INTRODUCTION

W ITH the rapid expansion of the market scale of the
Big Data industry, the material industry is also taking

advantage of Big Data to make revolutionary changes. Massive
material data can be analyzed, mined, and utilized through
Big Data technology to obtain corresponding values. Materi-
als R&D also means gradually entering the fourth paradigm,
data-driven materials R&D [1], which can reduce costs and
significantly shorten the R&D cycle. Therefore, more and more
countries worldwide have begun to build data-sharing platforms
and other infrastructure, provide valuable data for researchers,
and support the design, research, and development of new
materials.

Due to the multimodality, isomerization, and discreteness
of material data [2], various materials have their own com-
position and performance concerns. Even the same kind of
material may exist in different databases in distinct structural
forms. The severely fragmented, isomerized, and decentral-
ized material data makes it very difficult to store and re-
trieve, slowing down the development of resource integra-
tion, sharing, and analysis in the material field. At the same
time, it is urgent to take necessary security measures to pro-
tect sensitive data, as they may involve economic growth and
even national security. However, most of the existing ma-
terial Big Data platforms only provide fundamental security
measures, such as identity authentication and access control.
Once a leak occurs, it isn’t easy to trace back to the source
of the event. Protecting the original data from being leaked
and tampered with is a critical problem that researchers must
solve.

The vigorous development of blockchain technology has pro-
vided corresponding solutions for data protection of distributed
Big Data platforms [3], [4], [5]. Based on its tamper proof,
traceable and auditable characteristics [6], blockchain has been
adopted in finance, the Internet of Things, the Internet of Ve-
hicles, and other fields to ensure the security and reliability
of distributed system data storage [7]. However, the service
provider must completely traverse the entire blockchain to obtain
the query results in the retrieval process. At the same time,
the blockchain is a distributed ledger that continuously adds
transaction records [8], and the height of the blockchain will also
increase with the number of transaction requests. As a result,

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9530-8838
https://orcid.org/0000-0003-1624-5494
https://orcid.org/0000-0001-7600-7231
mailto:wangran423@foxmail.com
mailto:xucheng@ustb.edu.cn
mailto:zxt@ies.ustb.edu.cn

WANG et al.: TOWARD MATERIALS GENOME BIG-DATA: A BLOCKCHAIN-BASED SECURE STORAGE AND EFFICIENT RETRIEVAL METHOD 1631

the response cycle of retrieval will become longer and longer
and ultimately can not match the retrieval requirements of the
application.

To solve the above problems, this paper proposes a safe
and efficient data access scheme by introducing the Improved
Merkle Tree (MMT) based blockchain to solve the applicabil-
ity, efficiency, and security problems faced in the process of
multi-source heterogeneous material data storage and retrieval.
The main contributions of this paper include the following three
folds:

1) A blockchain-based Big Data security distributed stor-
age framework is proposed, which can effectively solve
the security problems faced by multi-source heteroge-
neous material data in the storage and retrieval process.
In terms of storage, each participant can flexibly de-
ploy blockchain nodes without changing the underlying
database framework. Distributed ledgers can ensure data
storage security and achieve tamper-proof, traceability,
and auditability. In terms of retrieval, the integrity of
retrieval results is verified by the hash value stored on
the blockchain. At the same time, the proposed method
only requires one data tamper-proof verification, which
greatly improves the efficiency and reduces the computing
overhead.

2) Given the heterogeneous characteristics of material data,
a dynamic container model is proposed to solve raw
data’s off-chain storage. Users can customize templates
applicable to their material data structures. The dynamic
container model normalizes the collected original data
sets and converts them into container data sets through
templates, which are resolved into different data structures
by database adapters and stored in appropriate databases.
The standardized data set will be helpful for subsequent
material data retrieval and calculation analysis. Further-
more, the final results are displayed to users as template
structure reorganization.

3) By adding an improved Merkle tree structure to the
blockchain, the transaction data on the chain and the
original data stored in the off-chain cloud are mapped
through templates to achieve efficient material data re-
trieval. MMT combines the advantages of Merkle Tree and
Merkle Patricia Trie (MPT), does not need to make any
changes to the underlying storage structure, and is suitable
for material data retrieval based on template structure.
In addition, compared with state-of-the-art, our proposed
method has higher efficiency.

The rest of this paper is organized as follows. Section II
introduces the material Big Data platform and the storage and
retrieval scheme based on the blockchain framework. Section III
proposes a blockchain-based storage scheme for multi-source
heterogeneous material data from both the off-chain and on-
chain dimensions. In Section IV, an efficient data retrieval
scheme based on MMT and a verification method for the in-
tegrity of raw material data are proposed. Section V analyzes
the impact of MMT structure on blockchain performance and
compares it with state-of-the-art. Section VI summarizes the
full text and prospects.

II. RELATED WORK

A. Material Big-Data Platform

Currently, many material Big Data platforms have been used
at home and abroad. From a data management and storage
perspective, most of these platforms adopt centralized storage.
The material database of the National Institute of Standards
and Technology [9] can accept data in any format, providing a
feasible scheme for exchanging and reusing material data. The
storage mode of the material database is relatively simple and
direct, and the “as is” data provided by the data provider is used
for storage. Therefore, a variety of data are stored in the material
database. Still, due to the extreme heterogeneity of the stored
data, the data content cannot be directly retrieved or integrated
with the analysis tools. Only “as is” data can be provided to the
demander.

AFLOW [10], [11], [12], Open Materials Database [13],
and MARVEL NCCR [14] store material data in different
types of databases, such as relational databases, file systems
or MySQL. AFLOW only supports retrieval by the Inorganic
Crystal Structure Database Number (ICSD Number for short),
Aflowlib Unique Identifier (AUID for short), and string but does
not provide range retrieval, fuzzy retrieval, and other functions.
The Open Materials Database provides a more straightforward
retrieval function, which can only be retrieved by keywords.
The retrieval results are displayed according to the classification
of “optimization results” and “contribution results,” and the
number of display results is limited to 100. MARVEL NCCR
does not provide a retrieval function for users to enter keywords
but only provides an index list of data sets in the database,
including relevant articles, videos, codes, and other information
published in the material field. Therefore, it isn’t easy to quickly
locate the information content related to a keyword.

On the other hand, MDF [15], Materials Project [16], and
OQMD [17] adopt a distributed storage scheme to store big
material data in local databases or cloud servers of different
institutions, which improves storage performance. However,
the data storage structures of different institutions are not uni-
form, which increases the difficulty for the subsequent sharing
of multi-source heterogeneous material data. MDF provides
keyword and range retrieval according to resource type, label,
organization, release year, and other types. The retrieval results
are some summary information, and users must authenticate to
obtain the original data. The Materials Project requires users to
perform identity authentication before retrieving data. Keywords
to be retrieved should be input according to a given format,
including only certain types of elements, at least certain types
of elements, and formulas. The OQMD allows users to retrieve
data according to the fields defined in the template according
to user-defined template, generate a retrieval file in a fixed
format, and query relevant data by uploading the retrieval file.
The advantage is that it can obtain more accurate data, while
the disadvantage is it requires a good understanding of the data
structure of the platform, increases the user’s learning cost for
using the platform, and lacks flexibility.

It can be seen that access to material data is still the main prob-
lem to be solved by the material Big Data platform. Researchers

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

1632 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

also focus on ensuring the safety of material data in storage,
retrieval, analysis, and sharing. It is necessary to consider how
to apply the characteristics of multi-source heterogeneous data
of material Big Data to achieve efficient and secure storage and
retrieval.

B. Blockchain-Based Data Storage

Blockchain provides a new solution for the secure storage
of multi-source heterogeneous material data [18], which can
promote the centralized audit and management of the under-
lying database. Blockchain was originally designed for digital
currency, represented by Bitcoin [19]. It created a complex
consensus mechanism, such as proof of work, which requires
substantial computing resources, making the blockchain system
unsuitable for large-scale data storage applications. To solve
these problems, Muzammal et al. [20] combined the blockchain
with the database to build a log-based application platform,
which can provide multi-active database and multi-disaster re-
covery middlewares. Yue et al. [21] used the blockchain to
provide data storage solutions for parties with data sources,
where data is linked to blocks in a specific way. Liu et al. [22]
proposed an efficient data collection and sharing scheme based
on blockchain and created a reliable storage environment in
combination with Ethereum and Deep Reinforcement Learning
(DRL).

However, storing all raw data on the blockchain is not optimal.
The consensus mechanism of the blockchain takes up a lot of
resources. The platform’s overall performance will be affected
if all material data is uploaded to the chain. Therefore, “storing
transactions on the chain and raw data off the chain” will be
an alternative to ensure data storage security and performance
without affecting throughput and computing performance.

C. Blockchain-Based Data Retrieval

Some retrieval algorithms have been proposed to improve
data retrieval ability in the blockchain and optimize them from
different aspects to improve retrieval efficiency.

Some research improves retrieval efficiency by optimizing
the data structure. VChain [23] proposed an accumulator-based
authentication data structure, which supports verifiable Boolean
range queries on the blockchain. At the same time, an inverted
prefix tree structure is proposed to speed up the processing of
massive subscription queries. Xu et al. [24] put forward a CMPT
structure based on MPT by introducing Lock free (Compare
And Wap, CAS) and Cache arrays, to realize parallel operations.
Multiple pieces of data can be inserted simultaneously, and the
retrieval efficiency can be improved. Qu et al. [25] proposed a
retrieval method based on temporal and spatial dimensions to
improve retrieval efficiency by adding appropriate fields in the
block header. Generally, these techniques only apply to some
specific scenarios or retrieval functions.

Some aims to improve retrieval efficiency by changing the
block structure. Jia et al. [26] took the AB-M tree as the storage
structure of the transaction and added Min and Max fields to the
block header, combining the advantages of a balanced binary
tree (fast data retrieval) and Merkle tree (fast data verification)

to provide speedier transaction retrieval and ensure the integrity
of the transaction. However, its application is limited to online
transaction retrieval, lacks association with data outside the
chain and does not propose appropriate optimization methods
for range retrieval. Pei et al. [27] created a mapping between
on-chain and off-chain data by adding a Merkle semantic tree
structure to the block, thus realizing real-time data retrieval. At
the same time, multiple complex analysis query primitives are
provided to support semantic, queries, and even fuzzy queries.
Although the above algorithm optimizes block structure and
does not need to traverse the entire blockchain to retrieve data,
the high computing overhead remains a problem.

Another part of the research improves retrieval efficiency by
modifying the blockchain framework. Muzammal et al. [20]
proposed ChainSQL by deploying the database for each node in
the blockchain and then verify the results from the blockchain.
Wu et al. [28] proposed a verifiable query layer (VQL) deployed
in the cloud to provide efficient and verifiable data query services
for the blockchain system. To prevent forged data, the database
maintains an encrypted fingerprint and writes it to the blockchain
to ensure the authenticity. Li et al. [29] developed EtherQL
to provide retrieval capability by adding an Ethereum query
layer. EtherQL provides efficient query primitives for analyzing
blockchain data, including range query and top-k query. Al-
though the above methods can improve retrieval efficiency by
querying directly from the database, the computational cost of
verifying the authenticity is significant, and they are not suitable
for with large scale applications.

III. SECURE DATA STORAGE

This paper uses the blockchain to store all transaction data,
while the platform’s Cloud Servers store the original material
data. At the same time, due to the characteristics of multi-
source and heterogeneous material data, a template-based data
collection method is proposed. Data with different structures in
the template are stored in various databases in the background
through dynamic containers. On-chain data is also classified and
stored in template type. It can be seen that the data stored on the
chain and off the chain depend on the material data template as
a bridge to connect. The organic combination of on-chain and
off-chain storage is achieved through the design of data storage
transactions.

A. System Storage Framework

From the perspective of the blockchain-based storage frame-
work, it could be divided into the following components, cloud
server, light nodes, and all nodes, as shown in Fig. 1. The cloud
server stores raw material data, consisting of different databases,
such as PostgreSQL, MongoDB, MongoDB’s GridFS, etc. All
transaction records are stored on the blockchain, and the light
node only stores all block header information on the blockchain.
The full node stores the complete blockchain ledger, including
all block headers and bodies, which can verify the integrity of the
original data retrieved, and is responsible for the broadcast and
verification of blockchain transactions. To improve the retrieval
efficiency on the chain, the keywords of the original data in the

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD MATERIALS GENOME BIG-DATA: A BLOCKCHAIN-BASED SECURE STORAGE AND EFFICIENT RETRIEVAL METHOD 1633

Fig. 1. A framework diagram of the overall storage system.

data storage system are extracted through ElasticSearch [30] in
the off-chain data storage system, and the inverted index table is
built and transferred to the blockchain. The index structure on
the chain is rebuilt in MMT structure according to the inverted
index table to facilitate subsequent on-chain retrieval.

From the perspective of a single block, block B =
(Bheader, Bbody) consists of block header Bheader and block
body Bbody, where Bbody stores the MMT structure, and the
leaf node stores data in the form of a key-value pair. The value
includes not only the metadata of the transaction but also the
storage address of the original data (Database Address, recorded
as DbA), which facilitates the subsequent search. To improve the
retrieval efficiency and provide the function of range retrieval
based on time and template type, we added new fields to the
blockchain’s original Bheader structure, mainly including the
following two parts:

1) Two additional fields, StartT ime and EndTime, have
been added. Temporal range-based retrieval is one of the
most basic retrieval conditions. The original blockchain
provides a key-history index, but the retrieval efficiency
is relative low, while the time complexity is O(n2). By
adding a time field in the block header, the time to obtain
the transaction timestamp is saved, and the retrieval effi-
ciency can be improved. In addition, the binary search’s
complexity is O(log(n)), which greatly improves the re-
trieval efficiency, helps quickly locate the data in a certain
period, and speed up the process of material data analysis.

2) MMTRootHash has been added. The time complexity
of keyword retrieval is reduced from O(n2) to O(log(n)),
which saves the time of deserializing transaction records
to extract metadata. On the other hand, it provides a
range search function based on the material data template.
Due to the heterogeneous characteristics, material data
is collected based on templates, and data with different
structures are stored in various databases via dynamic
containers (see Section III-B for details). Therefore, the

construction of an MMT structure based on the template
type has strong applicability to both the off-chain storage
system and the material data retrieval on the chain.

B. Off-Chain Storage: Dynamic Container

Material datasets are usually heterogeneous and stored in
different custom formats. Data sets often need to be standardized
via universal templates, finally achieving accurate retrieval and
computational analysis to reduce users’ cognitive burden and
learning costs. Therefore, this paper will describe the off-chain
storage scheme of multi-source heterogeneous material data
from material data classification, the composition of dynamic
containers, and the creation of containerized data sets.

The function and practicability of the storage scheme primar-
ily count on the number and complexity of material data types.
Based on the characteristics of material data, material data could
be divided into basic types and composite types. The basic types
include string, numerical, picture, and file types. A composite
type comprises various basic types: range, selection, array, table,
generator, container type, etc. Range type consists of a numerical
type, representing the interval value of two numerical values;
The selection type is composed of string type, depicting a text
option that can be selected for an attribute; The array type is
composed of an arbitrary basic type, representing an ordered
list of values; Table type, generator type, and container type
are composed of different sets of basic types. The difference
between these three is the form of type value selected in the
sets. The generator type can only take one value of certain types
in the sets. Container type can take a value of all types in the
sets. Table type can take any number of values of all types in the
sets.

Based on the type of material data, a Dynamic Container
Model (DCM) is designed to adapt to the storage of multi-source
heterogeneous material data. The built-in structure of abstract
containers in DCM is designed to be dynamically constructed

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

1634 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 2. Schematic diagram of relationship among components in the dynamic
container.

from different types of material data. Therefore, DCM provides
a method for storing, packaging, and exchanging data and allows
users to customize templates suitable for data structures.

From the composition of dynamic containers, DCM mainly
includes the following components: data ingestor, container
template designer, template evaluator, template matcher, and
data parser. The user can customize the template through the
container template designer, and the template evaluator will au-
dit the template. The data ingestor uses the approved template to
normalize the original dataset and convert it into a containerized
dataset. The data parser and template matcher will parse the
containerized dataset into metadata, text material data, binary
files, and other formats, which will be stored in the appropriate
database by the database adapter. The standardized dataset will
be helpful for subsequent material data retrieval and calculation
analysis. When the underlying database needs to provide the
web server with the retrieved raw data, the translator matches
the template rules, reassembles the material data of different
structures, and presents the formatted data in the template type.
The relationship diagram of the dynamic container is shown in
Fig. 2.

From the perspective of creating a containerized dataset, the
containerized dataset consists of two main parts: the container
template and the container instance. The container template
represents an abstract description of the properties and structure
of a material dataset. We denote “:” to describe the relationship
between the property and the data type. A type declaration
expression is marked as “x : T ”, which means the property x is
of typeT . A container templateS contains a series of expressions
of data-type declaration, denoted as:

S =
{
xi : T

i={1,...,n}
i

}
= {x1 : T1, . . . , xn : Tn} (1)

where xi indicates the properties and Ti indicates the name
of date-types. A container instance represents an abstract de-
scription of the data gathered together. It specifies the value
of each property and is constrained by the dataset template.
The assignment expression “x = v” indicates that the property
value x is v at some point. Then, the container instance C could
be represented by a series of assignment expressions:

C =
{
xi = v

i={1,...,n}
i

}
= {x1 = v1, . . . , xn = vn} (2)

Then, a normalized description of a material dataset could be de-
scribed as a containerized set (S,D), comprising a template and

Fig. 3. A flowchart of the inverted index creation.

several instances, where D = {Ci={1,...,n}
i } = {C1, . . . , Cn}.

It can be seen that DCM uses the template to normalize and
convert the original data set into a containerized one. The
standardized dataset will facilitate subsequent retrieval and com-
putational analysis of material data.

C. On-Chain Storage: MMT

To facilitate efficient retrieval based on blockchain in the
future, this paper creates an MMT structure through the inverted
index, index pointers between blocks, Merkle tree, and MPT to
store < key, (MD,DbA) > key-value pairs according to the
template type. This section describes the storage scheme on
the chain from the aspects of inverted index creation, MMT
structure, and MMT creation.

1) Inverted Index Creation: Unlike the structured database
system, a large amount of data stored in the blockchain has
no fixed structure, so the commonly used hash index [31] and
B+ tree index [32] in the database cannot be directly applied
to the blockchain system. Most full-text indexing technologies
are based on inverted indexing [33]. It supports keyword query,
the most effective index structure for multi-source heteroge-
neous data. Therefore, in the retrieval scheme, this paper uses
the inverted index to obtain the corresponding relationship of
< key, (MD,DbA) > in the database system. We take Elastic-
Search [30] (referred to as ES) as an example and use different
databases in the cloud server to store material gene Big Data
with various structures. Then, import the data into the cluster
established by ElasticSearch, create a < key, (MD,DbA) >
data map, and establish a reverse index to facilitate subsequent
retrieval of the original material data. ES is based on the open-
source library Lucene [34] and provides application interfaces
by encapsulating the relevant functions, a query engine, and a
search engine to complete the purpose of data retrieval. Thus,
it has good usability. As ES is widely used in the industry, the
inverted index construction is not described here but only in the
inverted index construction flow chart, as shown in Fig. 3.

According to the original dataset, extract the keywords
through ES, build a < key, (MD,DbA) > mapping relation-
ship, and return the key-value pair to the web server for
creating MMT. key is the hexadecimal token generated by
encryption for each keyword, and value is the keyword’s cor-
responding MD and DbA. Finally, insert the key-value pair
< key, (MD,DbA) > into the MMT.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD MATERIALS GENOME BIG-DATA: A BLOCKCHAIN-BASED SECURE STORAGE AND EFFICIENT RETRIEVAL METHOD 1635

Fig. 4. The workflow diagram of data uploading.

2) MMT Structure: MMT is mainly composed of the Merkle
tree and the MPT. The upper layer of MMT uses the Merkle
tree to classify data according to the template type to support
range queries. At the same time, each leaf node of the Merkle
tree stores the root hash of all data under a specific type of
template, as shown in Fig. 4. The values stored in the leaf node
are recorded as< Template TId, T Id−MPTRootHash >,
TId ∈ TemplateSet. TemplateSet is the approved template
set of the platform. The root node of the Merkle tree is recorded
as MMT Root Hash and stored in the Bheader for subsequent
data authenticity verification. In this paper, data is classified and
stored based on templates, and then metadata corresponding
to keywords is found from such data templates. This method
matches the data collection mode, where material data is sub-
mitted according to the template type during the collection
process. Therefore, the retrieval algorithm based on MMT is
more conducive to the multi-source heterogeneous material data,
facilitating researchers to search and analyze based on a specific
type of material data template and speeding up the developing
process of new materials.

The lower layer of MMT adopts the MPT to support keyword
queries, with the functions of searching, verifying, and storing
the key-value pair simultaneously. The key is a particular hex-
adecimal encoding of the keyword, and value is the Recursive
Length Prefix (RLP) [35] encoding. There are four types of
nodes in an MPT tree: root node, leaf node, branch node, and
extension node. The root node stores the hash of the whole
tree, which is consistent with the data structure of the extension
node. The leaf node is responsible for storing key-value pairs.
The extension node is also responsible for storing key-value
pairs, but its key is the common prefix of its child nodes, and
the value is the hash of all its child nodes. Finally, the branch
node has 17 elements. The first 16 elements represent the node’s
possible branches (16 hexadecimal digits), which are also the
first unequal hexadecimal digits in the key. The 17th element is
the value field, the hash of all child nodes. All kinds of nodes
are connected through pointers. From the sharednibble of the
root node to the keyend of the final leaf node, a complete key
is formed. The value corresponding to the key is stored in the
leaf node. The structure of the MPT is shown in Fig. 5.

3) MMT Creation: From the view of creating the upper
Merkle tree, two possible scenarios exist for inserting key-value
pairs into the MMT. First, if the data template of the keyword

Fig. 5. The MPT structure in MMT.

to be inserted does not match that in the Merkle tree’s leaf node
on the upper layer of the MMT, then a new Merkle tree leaf
node should be created. For example, the creation process of the
Template Tb branch is displayed in Fig. 6. When the keyword
key3 = 017b1e3d is inserted, MD3. T emplate = Tb does not
match any leaf node when traversing the upper Merkle tree of
the MMT. Therefore, a new leaf node needs to be added to the
Merkle tree, that is, the root of the MPT belonging to Template
b. The newly created MPT stores all key-value pairs belonging
to Template Tb. The second case is when the data template of
the keyword to be inserted matches the corresponding template
in the leaf node of the Merkle tree, the matching Tx −MPT
will be traversed, where Tx ∈ TemplateSet.

On creating the lower level MPT, the material data template
is determined with corresponding to the keyword based on
the Merkle tree. Then, start to create the lower level MPT
structure of the MMT, and insert the < key, (MD,DbA) >
key-value pairs, as shown in Fig. 6. Inserting a key-value pair into
a leaf node of MPT also involves two cases: the first is the key
to be inserted exactly matches that of the leaf node. In this case,
the value of the original leaf node is directly modified, and the
new value is appended to the original. For example, the original
is data1, and the new is data2. Insert < key, value >=<
key1, (data1, data2) > to the leaf node. In the second case, if
the key to be inserted does not match that of the leaf node,
the matching public prefix should be utilized to generate an
extension node. Then, the branch node’s multi-branch feature
is taken advantage of to point to multiple leaf nodes. Finally,
new pairs < key2, data3 > and < key1, (data1, data2) > are
stored to the original leaf node. The specific algorithm flow of
MMT tree creation is shown in Algorithm 1.

Since MMT generally contains all index information on the
blockchain, the size of the index increases as the index informa-
tion increases. MMT introduces a node index pointer structure
to reduce the storage cost within the block. If the MMT is not

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

1636 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 6. Create MMT based on inverted index table.

TABLE I
FIELDS AND MEANINGS OF DATA STORAGE TRANSACTIONS

Fig. 7. A schematic diagram of MMT update.

updated, it is not necessary to keep it in the newly generated
block. On the contrary, add a node index pointer to the last node
in the previous block where the MMT has not changed. Only the
updated node needs to be stored in the new block’s MMT. Fig. 7
details the process of index updating. The pink node represents
the upper Merkle tree of the MMT, the purple node represents
the lower MPT, and the purple node in the box is the newly

inserted node in the MMT. This update method is also helpful
for template-based retrieval, and only the MPT of a specific
template type in the block body that meets certain requirements
needs to be traversed.

The transaction is a bridge for the interaction of each partici-
pating entity of the material Big Data platform. It can establish
a mapping relationship between the off-chain data and the on-
chain data and build a storage mode of “storing transactions
on-chain and original data off-chain.”

D. The Transaction Process of Data Storage

The transaction is a bridge for the interaction of each partici-
pating entity of the material Big Data platform. It can establish
a mapping relationship and build a storage mode of “storing
transactions on-chain and original data off-chain.”

Data storage transactions mainly include these following
fields, namely isSuccess, Sign, MD, and ContentHash,
whose specific meanings are shown in Table I. The metadata
MD includes 16 fields, such as data ID, data title, data abstract,
and template to which the data belongs. The definitions of other
fields are shown in Table II. Among them, Template is closely
related to the MMT-based retrieval method. Table III shows all
the fields and meanings of the material data template.

Five main entities are involved in the entire data storage
transaction process: the client, web server, blockchain, LevelDB,
and cloud server. The user creates a material data template on
the client side that fills in the data form, including metadata, data
content, etc. The web server plays the role of middleware. As the
forwarder of the requested transaction, it isolates the blockchain

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD MATERIALS GENOME BIG-DATA: A BLOCKCHAIN-BASED SECURE STORAGE AND EFFICIENT RETRIEVAL METHOD 1637

Algorithm 1: MMT Establishment Algorithm.
Input: inverted index data set

InvSet =< keyn, (MDn, DbAn) >, n as the length of
inverted index set. R as the MMTRoot node.

1: for i = 1 to n do
2: if InvSet.MDi.template match

R.childj .template then
3: flag set up false
4: foreach childm in < R.childj > do
5: if keyi match R.childm.key then
6: insert < keyi, (MDi, DbAi) > to R.childm
7: flag set up true
8: end if
9: if flag==false then

10: Add value of new node into R.childj
11: end if
12: end for
13: else {InvSet.MDi.template not match

R.childj .template}
14: create a new node as MPTRoot insert to R,

record as newMPTR
15: insert < keyi, (MDi, DbAi) > to

newMPTR.child
16: end if
17: end for
18: Update R hash
Output: MMT MMT

TABLE II
FIELDS AND MEANINGS OF METADATA

from the cloud server. All interactions between the blockchain
and the cloud server pass through the web server, ensuring the
underlying database’s security. The blockchain is responsible for
authentication, saving the metadata corresponding to keywords
and the original database address, and creating data storage
transactions to facilitate subsequent data traceability. LevelDB
is used for the underlying storage of the blockchain to store
and update the MMT structure. Cloud servers are responsible

TABLE III
FIELDS AND MEANINGS OF TEMPLATE

Fig. 8. A flow chart of data storage transaction.

for storing all raw data. The blockchain-based data storage
transaction process is detailed in Fig. 8.

IV. EFFICIENT DATA RETRIEVAL BASED ON MMT

Given that the retrieval efficiency of the blockchain will con-
tinue to decline with the increase of the data amount, MMT di-
rectly builds the mapping relationship of< key, (MD,DbA) >
and no longer needs to traverse the entire blockchain. In addition,
it is unnecessary to deserialize all the transaction data inside
the block and then extract the metadata, which to some extent
improves retrieval efficiency. At the same time, each block only
needs to store updated key-value pairs, and MMTs between
different blocks are connected through index pointers, saving
storage space. The data are associated, which further improves
the retrieval efficiency.

A. Retrieval Algorithm Based on MMT

To facilitate the understanding of the MMT-based retrieval,
we illustrate the entire process with temporal template-based
range retrieval, part of which contains the keyword retrieval, as
shown in Algorithm 2.

A given time range [t1, t2] is compared with the StartT ime
and EndTime fields in the block header. As shown in Fig. 9,
the creation time of all transactions on the blockchain increases
in an orderly manner from the first block to the latest. To save
time, we use the binary search to locate the block corresponding
to the recent time t2 and stop the binary search if tp ≤ t2 ≤ tq
is found. Then, traverse forward from the searched block until
the block header of tm ≤ t1 ≤ tn is found, and add all traversed
blocks to the retrieval data set Rset.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

1638 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 9. Schematic diagram of keyword retrieval based on time and template.

Algorithm 2: MMT Retrieval Algorithm.
Input: Block header Bh; MMT MMT ; retrieval
conditions:< Template Ta, [t1, t2], key1 >.

1: if the node that request the retrieval is a light node then
2: communicate with a reliable full node for retrieval
3: end if
4: foreach Bhi in < Bh > do
5: if t1 ≥ Bhi.StartT ime and t2 ≤ Bhi.EndT ime then
6: record blocknumber and MMTRoot of Bhi as Rset
7: end if
8: end for
9: foreach Rseti.child in < Rset > do

10: if Rseti.child.template = Ta then
11: Traverse < Rseti.child >
12: if key1 is founed then
13: retrieval result is written to the set Mr
14: end if
15: end if
16: end for
Output: retrieval results (MDSet Mr)

Keyword search: Suppose Rset =< Blocki, Blocki+1,
Blocki+2 >, taking Blocki+1 as an example, find the metadata
corresponding to the keyword key1 = 01dac712 belonging to
the Template Ta in the block body. The block body only stores
the key-value pairs of the newly submitted data tothe current
block, and connects the nodes of the MMT in all block bodies by
pointers to form a complete MMT search tree, as shown in Fig. 9.
Therefore, it is more convenient and faster to find the keyword
key1 under Template a. You only need to find Template a first
based on the Merkle tree from the latest block, and then find
key1 from the MPT under the template through prefix matching.
Template Ta of the parent block could be directly found using
pointers, which saves the process of retrieving the Merkle tree.
Then, find the keyword position corresponding to the parent
node directly, and the retrieval efficiency can be further improved
through the pointer structure.

Due to the blockchain’s complex structure and network com-
munication, retrieving data through the blockchain is generally

Fig. 10. Data retrieval flow chart.

slower than that directly from the database. However, our pro-
posed MMT-based method saves the time of finding the hash
of block address, traversing the transaction list in the block, and
deserializing the transaction to extract metadata. It can query ac-
cording to the template and the efficiency is close to that of direct
retrieval from the database. At the same time, the upper layer of
the MMT is based on the Merkle tree, and all nodes store hash
values. Thus, the MMT is a tamper-proof structure. The hash
value is calculated from the bottom leaf node. Whether any data
in the upper or lower MPT is tampered with, the MMTRoot hash
value calculated through Hash verification will be inconsistent
with the original stored hash. Therefore, the MMT can quickly
detect malicious tampering, and the anti-tampering verification
is detailed in Section IV-C.

B. Data Retrieval Transaction Process

Retrieval transactions is mainly used to record retrieval re-
sults. The structure of retrieval transaction is similar to that of
data storage transaction, mainly including the keys, Tx − rid,
Template TId, MDSet, and CategorySet, where Tx − rid
represents the unique retrieval record ID, TemplateID repre-
sents the unique template ID,MDSet represents the set of meta-
data corresponding to the retrieval results, and CategorySet
represents the material classifications to which the template
belongs.

The data demander can enter the time range, template type,
and keywords on the retrieval page to initiate a data retrieval
process, which also involves five entities, i.e., the client, web
server, blockchain, LevelDB, and cloud server. The client is used
as the retrieval entrance. The user can input specific content on
the retrieval page to initiate the retrieval process, and the retrieval
results are also displayed on corresponding page. The web server
provides the retrieval application programmable interface (API),
which acts as a middleware to forward requests between the
blockchain and the cloud server. Blockchain is used to verify
the correctness and store retrieval transactions. LevelDB is used
to retrieve the corresponding keywords in the MMT and return
the related metadata. The cloud server stores the original data
and return specific raw data according to the DbA. The data
retrieval process based on blockchain is shown in Fig. 10.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD MATERIALS GENOME BIG-DATA: A BLOCKCHAIN-BASED SECURE STORAGE AND EFFICIENT RETRIEVAL METHOD 1639

Fig. 11. A schematic diagram of retrieval result verification process.

C. Tamper Proof Verification

The metadata obtained by the data demander can be stored
in the blockchain’s LevelDB to ensure that it will not tamper
with. In addition, ensuring that the original data obtained from
the cloud does not tamper with is the primary concern of this
article.

If the Full node initializes the retrieve, the authenticity of the
original data can only be verified within itself. However, if a
Light node only stores Bheader, it cannot be used for tamper-
proof verification inside the node. In this case, it is necessary
to communicate with all nearby reachable nodes, while the
reachable Full node help verifies the results’ authenticity. Light
nodes generate MD′ from the original retrieved data through
the web server and send keywords and MD′ to the Full node.
Locate the node location corresponding to the MMT via the
keyword, and then calculate all hash values on the path from this
location to the root, finally obtainingMMTRootHash′. Return
MMTRootHash′ to the Light node to determine whether it
equals the MMTRootHash stored in it. If equal, the original
data obtained could be proved to have not been tampered with.
The schematic diagram of the retrieval result validation process
is shown in Fig. 11.

Compared with the blockchain’s verification, our proposed
method significantly reduces the number of verifications. In the
original blockchain structure, the integrity of the search result
must be verified by calculating the root hash of the Merkle tree
stored in the full node. Since the metadata stored in the MMT
only contains some summary information of the original data,
there is no need to verify it. Only one tamper-proof verification
is required when obtaining the original data.

V. EXPERIMENT AND ANALYSIS

In this section, we first test the performance of the storage and
retrieval framework proposed in this paper, mainly considering
the efficiency of blockchain generation and the response time
and throughput of the MMT in retrieval. Second, we compared
with improved retrieval algorithms based on the Merkle tree,
such as CMPT [24], MST [27], AB-M [26], to reflect the
advantages of our proposed method.

A. Environment Configuration

The material genome Big Data sharing platform we built [36]
has been in stable operation for six years, in which over 14

TABLE IV
EXPERIMENTAL CONFIGURATIONS

million pieces of material scientific data are stored, and over
2300 data templates are available. The experiment in this paper
is carried out in its testing system. The material data type is
steel materials, including 10,000 pieces of material data and 20
material data templates. Specific blockchain configuration items
and parameters are shown in Table IV. In terms of testing tools,
we use Jmeter to test the blockchain-based retrieval performance
and simulate user upload and retrieval operations by sending
HTTP requests.

B. Performance Evaluation

Since the secure material genome big-data sharing platform
does not have too many restrictions on the storage space, the
primary purpose of the MMT is to improve the overall retrieval
efficiency, which can be achieved by sacrificing a certain amount
of storage space. Therefore, this paper focuses on the impact of
MMT on retrieval performance. We assume that the transaction
request rate is set to 100, 200, 300, 500, 800, and 1000 tps,
respectively, and each block contains ten transactions. We tested
the performance of the blockchain framework based on MMT
from two aspects, including 1) CPU and memory usage during
data retrieval in the application scenario of the material big-data
platform [36]; 2) The delay and throughput performance of the
blockchain with and without the MMT is measured to check
whether its performance falls within an acceptable range.

Fig. 12 compares the CPU and memory occupied by the
blockchain framework running on cloud servers before and after
adding the MMT structure. Fig. 12(a) shows that as the data
retrieval transaction request rate increases, the CPU’s concurrent
tasks need to handle continue to grow. Regardless of whether the
MMT structure is added or not, the CPU usage of the blockchain
framework will continue to increase. After adding the MMT
structure, the web server needs to read LevelDB to obtain the
metadata to reduce computational complexity and exchange
space for time, which increases communication overhead. At the
same time, verification of the integrity of the retrieval results has
been added after the retrieval is completed, and the verification
process will also increase the CPU workload. Therefore, adding
an MMT structure will slightly increase CPU usage. In practical
applications, the transaction request rate of the material big-data
platform generally does not exceed 200 tps. At a transaction
request rate of 200 tps, the CPU utilization rate is only 18.8%,
which is only 2.9% higher than that without the MMT, fully

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

1640 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 12. A comparison of server resource usage before and after adding MMT structure. (a) CPU. (b) Memory.

Fig. 13. A comparison of blockchain performance before and after MMT
structure is added.

meeting the application requirements of the material Big Data
platform. As shown in Fig. 12(b), with the increase of the
data retrieval transaction request rate, the memory usage of
the blockchain framework before and after adding the MMT
structure has remained at 0.1% during operation, and there has
been no significant change. This indicates that the blockchain
framework does not have high memory requirements during
operation, only requiring specific CPU performance.

Fig. 13 compares blockchain performance before and after
adding the MMT structure under various data upload transaction
request rates. It can be seen from the experimental results that,
with the increasing transaction request rate, the changing trend of
blockchain performance before and after adding the MMT struc-
ture is consistent. When the transaction request rate is lower than
300 tps, there is no significant impact on throughput and latency.
When the transaction request rate exceeds 300 tps, the average
delay of the blockchain increases with the increase of the trans-
action request rate. The throughput decreases synchronously,

which is stable above 230 tps. It can be seen that the blockchain
network can handle transaction requests up to 300 tps without
significant network latency. In the practical use of the material
Big Data platform, the transaction request rate generally does
not exceed 200 tps. At the same time, adding the MMT structure
only increased the delay time by 0.09 seconds on average under
the transaction request rate of 200 tps. The increased delay time
was almost insensitive to the application experience, and MMT
also has little impact on the throughput. From this point of view,
the MMT structure introduced in this paper has not significantly
impacted the blockchain’s performance, which is mainly related
to the block-out strategy and the hardware carrying capacity of
the platform.

C. Performance Comparison of Different Blockchain
Frameworks

To demonstrate the performance advantages of our proposed
MMT-based blockchain framework, we compared it with typi-
cal frameworks regarding retrieval efficiency, including Hyper-
ledger FabricTo demonstrate the performance advantages of our
proposed MMT-based blockchain framework, we compared it
with typical frameworks regarding retrieval efficiency, including
Hyperledger Fabric [37] and Ethereum [38].

Fig. 14 compares the performance of MMT-based and other
blockchain frameworks in terms of data upload and retrieval
transactions. Fig. 14(a) shows that the response times of the
three blockchain frameworks remain consistent as the data up-
load transaction request rate increases. When the transaction
request rate is below 300 tps, the response time for data upload
increases relatively slowly because the maximum throughput of
the blockchain framework has not yet been reached. However,
when the transaction request rate exceeds 300 tps, the response
time of the blockchain increases with the increase in the trans-
action request rate. The blockchain framework proposed in this
article has a slightly longer response time compared to Fabric

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD MATERIALS GENOME BIG-DATA: A BLOCKCHAIN-BASED SECURE STORAGE AND EFFICIENT RETRIEVAL METHOD 1641

Fig. 14. A comparison of response times of different blockchain frameworks. (a) Data uploading. (b) Data retrieval.

Fig. 15. A comparison of retrieval algorithm’s response time under various transaction request rates. (a) Keyword retrieval. (b) Range retrieval. (c) Fuzzy retrieval.

due to the addition of an MMT structure, but it is almost imper-
ceptible in application experience. Compared to Ethereum, this
framework has a significant advantage in response time because
its consensus mechanism has a lower time complexity. Even if
an MMT structure is added to the block, the response time for
data uploading is still better than Ethereum.

Fig. 14(b) shows that the response times of the three
blockchain frameworks for data retrieval transactions continue
to grow with the increase in transaction rate. The blockchain
framework proposed in this article has significant advantages in
retrieval time compared to the other two blockchain frameworks.
The average response time of this framework is shortened by
1.82 s compared to Fabric, and by 4.69 s compared to Ethereum.
The main reason for this improvement is the addition of an
MMT structure, which eliminates the need to traverse the entire
blockchain and does not require deserialization operations. It
can directly obtain metadata, thus significantly saving retrieval
time.

D. Comparison Experiment of Retrieval Algorithms

To verify the performance of the MMT in terms of re-
trieval efficiency, especially in terms of range retrieval based
on material templates, we compared our proposed method with
state-of-the-art MPT or Merkle tree-based retrieval algorithms

such as CMPT, MST, AB-M, under the same experimental
conditions. The requested retrieval transactions rate is set as
50, 100, 200, 300, 500, and 1000 tps, and the response time of
various algorithms is compared.

Fig. 15 shows that under different retrieval request rates, the
response time of all retrieval algorithms will increase with the
increase in transaction rate. As shown in Fig. 15(a), in terms of
keyword retrieval, under the condition of 200 tps, the response
time of CMPT keyword retrieval is 0.144 seconds faster than
that of the MMT method on average. In the process of keyword
retrieval, CMPT adds a Cache array structure to increase the time
complexity to O(1). MMT does not need to perform the deseri-
alization operation in obtaining metadata, and it can directly get
metadata. Thus, the CMPT algorithm does not show significant
advantages in keyword retrieval, but the MMT is superior to
MST and AB-M algorithms in keyword retrieval efficiency. As
shown in Fig. 15(b), in terms of range retrieval, the response
time of the MMT method is better than that of others. Under
200 tps, the MMT is 1.168 seconds higher than that of MST. The
advantages of MMT range retrieval mainly lie in the following
two aspects: on the one hand, it does not need to traverse the
block to find the time of keyword creation; on the other hand,
the update nodes of the MMT are connected by pointers between
blocks, thus reducing the time to find templates and the same
keyword in different blocks. As shown in Fig. 15(c), since the

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

1642 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

MPT searches keywords by matching the same prefix tree, it is
more suitable for fuzzy retrieval. Since CMPT, MST and MMT
are all retrieval algorithms modified based on MPT, the effi-
ciency of these three is better than AB-M. In addition, because
MMT classifies keywords according to different templates and
builds an index structure, it can enable multiple threads to search
under different templates simultaneously. Therefore, regardless
of the type of retrieval, the MMT has certain advantages over
others in terms of efficiency.

The above experimental analysis found that adding an MMT
structure has no noticeable effect on the block generation rate.
At the same time, MMT is superior to the other three retrieval
methods in terms of efficiency, especially regarding range re-
trieval. The structure of MMT is better suited to the retrieval
requirements of the material gene Big Data security sharing
platform.

VI. CONCLUSION AND PROSPECT

This paper proposes a secure storage and efficient retrieval
method for genome Big Data of multi-source heterogeneous
materials. In terms of security, the introduction of the blockchain
framework provides an effective security mechanism for the
material Big Data platform in the storage and retrieval process.
Regarding storage, multi-source heterogeneous material data
is stored in different databases off-chain through material data
templates and dynamic container models. In terms of retrieval,
the Merkle tree and MPT are combined to build an MMT
structure, which can realize keyword, range, and fuzzy retrieval
based on templates. At the same time, we further optimized the
MMT algorithm through binary search, index pointer, no dese-
rialization, and other methods to improve the overall retrieval
efficiency. To verify the integrity of the original data obtained,
we confirmed that the original data had not been tampered
with through the uniqueness of the hash stored in the MMT. In
addition, the experimental results prove that adding an MMT
structure has no noticeable effect on the block generation rate.
At the same time, MMT is superior to state-of-the-art retrieval
methods in terms of efficiency, especially regarding range
retrieval. The method proposed in this paper is more suitable for
the application needs of the material Big Data sharing platform,
and the retrieval efficiency has also been significantly improved.

In the future, the following two aspects should be our primary
considerations. On the one hand, since the MMT algorithm can
well solve the retrieval problem of multi-source heterogeneous
data, we consider expanding it to other application fields to prove
its scalability, e.g., edge computing in the industrial Internet
of Things [39]. On the other hand, we will further investigate
multi-party joint retrieval so that data owners can fully control
their material data and not share their original data with data
service providers. Instead, multiple material data owners can
achieve multi-party joint retrieval through federated learning,
multi-party security computing, and other technologies under
the condition that the data does not go out of the local area,
providing a solid security foundation for data sharing.

REFERENCES

[1] A. Agrawal and A. Choudhary, “Perspective: Materials informatics and
Big Data: Realization of the “fourth paradigm” of science in materials
science,” APL Mater., vol. 4, no. 5, 2016, Art. no. 053208.

[2] L. Himanen, A. Geurts, A. S. Foster, and P. Rinke, “Data-driven materials
science: Status, challenges, and perspectives,” Adv. Sci., vol. 6, no. 21,
2019, Art. no. 1900808.

[3] M. Macdonald, L. Liu-Thorrold, and R. Julien, “The blockchain: A com-
parison of platforms and their uses beyond bitcoin,” Work. Pap, pp. 1–18,
2017.

[4] H. Yu, H. Sun, D. Wu, and T.-T. Kuo, “Comparison of smart contract
blockchains for healthcare applications,” in Proc. AMIA Annu. Symp.,
2019, Art. no. 1266.

[5] M. J. M. Chowdhury et al., “A comparative analysis of distributed
ledger technology platforms,” IEEE Access, vol. 7, pp. 167930–167943,
2019.

[6] A. A. Monrat, O. Schelén, and K. Andersson, “A survey of blockchain
from the perspectives of applications, challenges, and opportunities,” IEEE
Access, vol. 7, pp. 117134–117151, 2019.

[7] N. Deepa et al., “A survey on blockchain for Big Data: Approaches,
opportunities, and future directions,” 2021, arXiv:2009.00858.

[8] A. Marsalek, T. Zefferer, E. Fasllija, and D. Ziegler, “Tackling data
inefficiency: Compressing the bitcoin blockchain,” in Proc. 18th IEEE
Int. Conf. Trust, Secur. Privacy Comput. Commun. 13th IEEE Int. Conf.
Big Data Sci. Eng., Rotorua, New Zealand, 2019, pp. 626–633.

[9] Materials data repository home, 2017. Accessed: Dec. 15, 2022. [Online].
Available: https://materialsdata.nist.gov/

[10] Aflow - automatic flow for materials discovery, 2012. Accessed: Dec.
15, 2022. [Online]. Available: https://aflowlib.org/

[11] S. Curtarolo et al., “AFLOW: An automatic framework for high-
throughput materials discovery,” Comput. Mater. Sci., vol. 58, pp. 218–
226, 2012, arXiv:1308.5715.

[12] S. Curtarolo et al., “ORG: A distributed materials properties repository
from high-throughput AB initio calculations,” Comput. Mater. Sci., vol. 58,
pp. 227–235, 2012.

[13] Open materials database, 2016. Accessed: Dec. 15, 2022. [Online]. Avail-
able: https://openmaterialsdb.se/

[14] S. P. Huber et al., “AiiDA 1.0, a scalable computational infrastructure for
automated reproducible workflows and data provenance,” Sci. Data, vol. 7,
no. 1, 2020, Art. no. 300.

[15] B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, and I.
Foster, “The materials data facility: Data services to advance materials
science research,” JOM, vol. 68, no. 8, pp. 2045–2052, 2016.

[16] A. Jain et al., “Commentary: The materials project: A materials genome
approach to accelerating materials innovation,” APL Mater., vol. 1, no. 1,
2013, Art. no. 011002.

[17] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, “Materials
design and discovery with high-throughput density functional theory:
The open quantum materials database (OQMD),” JOM, vol. 65, no. 11,
pp. 1501–1509, 2013.

[18] Y. Ren, Y. Leng, Y. Cheng, and J. Wang, “Secure data storage based on
blockchain and coding in edge computing,” Math. Biosci. Eng., vol. 16,
no. 4, 2019, pp. 1874–1892.

[19] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. Ac-
cessed: Dec. 15, 2022. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[20] M. Muzammal, Q. Qu, B. Nasrulin, and A. Skovsgaard, “A blockchain
database application platform,” 2019, arXiv:1808.05199.

[21] L. Yue, H. Junqin, Q. Shengzhi, and W. Ruijin, “Big data model of security
sharing based on blockchain,” in Proc. 3rd Int. Conf. Big Data Comput.
Commun., 2017, pp. 117–121.

[22] C. H. Liu, Q. Lin, and S. Wen, “Blockchain-enabled data collection and
sharing for industrial IoT with deep reinforcement learning,” IEEE Trans.
Ind. Inform., vol. 15, no. 6, pp. 3516–3526, 2019.

[23] C. Xu, C. Zhang, and J. Xu, “vChain: Enabling verifiable boolean range
queries over blockchain databases,” in Proc. Int. Conf. Manage. Data,
Amsterdam Netherlands, 2019, pp. 141–158.

[24] J. Xu, Y. Tian, T. Ma, and N. Al-Nabhan, “Intelligent manufacturing
security model based on improved blockchain,” Math. Biosci. Eng., vol. 17,
no. 5, pp. 5633–5650, 2020.

[25] Q. Qu, I. Nurgaliev, M. Muzammal, C. S. Jensen, and J. Fan, “On
spatio-temporal blockchain query processing,” Future Gener. Comput.
Syst., vol. 98, pp. 208–218, 2019.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

https://materialsdata.nist.gov/
https://aflowlib.org/
https://openmaterialsdb.se/
https://bitcoin.org/bitcoin.pdf

WANG et al.: TOWARD MATERIALS GENOME BIG-DATA: A BLOCKCHAIN-BASED SECURE STORAGE AND EFFICIENT RETRIEVAL METHOD 1643

[26] D.-Y. Jia, J.-C. Xin, Z.-Q. Wang, H. Lei, and G.-R. Wang, “SE-Chain: A
scalable storage and efficient retrieval model for blockchain,” J. Comput.
Sci. Technol., vol. 36, no. 3, pp. 693–706, 2021.

[27] Q. Pei, E. Zhou, Y. Xiao, D. Zhang, and D. Zhao, “An efficient query
scheme for hybrid storage blockchains based on merkle semantic trie,”
in Proc. IEEE Int. Symp. Reliable Distrib. Syst., Shanghai, China, 2020,
pp. 51–60.

[28] H. Wu, Z. Peng, S. Guo, Y. Yang, and B. Xiao, “VQL: Efficient and
verifiable cloud query services for blockchain systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 6, pp. 1393–1406, Jun. 2022.

[29] Y. Li, K. Zheng, Y. Yan, Q. Liu, and X. Zhou, “EtherQL: A query layer for
blockchain system,” in Database Systems for Advanced Applications, S.
Candan, L. Chen, T. B. Pedersen, L. Chang, and W. Hua (Eds.), vol. 10178.
Berlin, Germany: Springer, 2017, pp. 556–567.

[30] A. Yang, S. Zhu, X. Li, J. Yu, M. Wei, and C. Li, “The research of policy
Big Data retrieval and analysis based on elastic search,” in Proc. IEEE Int.
Conf. Artif. Intell. Big Data, 2018, pp. 43–46.

[31] G. R. Mitchell and M. E. Houdek, “Hash index table hash generator
apparatus,” U.S. Patent 4215402, 1980.

[32] X. Li, C. Ren, and M. Yue, “A distributed real-time database index
algorithm based on b tree and consistent hashing,” Procedia Eng., vol. 24,
pp. 171–176, 2011.

[33] G. E. Pibiri and R. Venturini, “Techniques for inverted index compression,”
ACM Comput. Surv., vol. 53, no. 6, pp. 1–36, 2021.

[34] Welcome to Apache Lucene, 2000. Accessed: Dec. 15, 2022. [Online].
Available: https://lucene.apache.org/index.html

[35] A. Coglio, “Ethereum’s recursive length prefix in ACL2,” 2020,
arXiv:2009.13769.

[36] National meterial data management & service, 2018. Accessed: Dec.
15, 2022. [Online]. Available: http://mged.nmdms.ustb.edu.cn/analytics/

[37] Hyperledger fabric–hyperledger foundation, 2015. Accessed: Dec.
15, 2022. [Online]. Available: https://www.hyperledger.org/use/fabric

[38] Ethereum, 2015. Accessed: Dec. 15, 2022. [Online]. Available: https://
ethereum.org

[39] A. Ruggeri, A. Galletta, L. Carnevale, and M. Villari, “An energy efficiency
analysis of the blockchain-based extended triple diffie-hellman protocol
for IoT,” in Proc. IEEE Symp. Comput. Commun., 2022, pp. 1–6.

Ran Wang (Graduate Student Member, IEEE) re-
ceived the BE degree from the Beijing Information
Science and Technology University, China, in 2013,
and the MS degree from the University of Science
and Technology Beijing (USTB), China, in 2016.
She is currently working toward the doctoral degree
in the Microarchitecture and Integrated Circuits Lab
(MICL) with the University of Science and Tech-
nology Beijing. Her research interests include multi-
agent systems, distributed security and Internet of
Things.

Cheng Xu (Member, IEEE) received the BE, MS,
and PhD degree from the University of Science and
Technology Beijing (USTB), China, in 2012, 2015,
and 2019 respectively. He is currently working as
an associate professor in the Microarchitecture and
Integrated Circuits Lab (MICL), University of Sci-
ence and Technology Beijing. He was supported by
the post-doctoral Innovative Talent Support Program
from Chinese government, in 2019. He is an associate
editor of International Journal of Wireless Informa-
tion Networks. His research interests now include

swarm intelligence, multi-robots network, distributed security and Internet of
Things.

Xiaotong Zhang (Senior Member, IEEE) received
the MS and PhD degrees from the University of
Science and Technology Beijing, in 1997, and 2000,
respectively. He is a professor in the Department of
Computer Science and Technology, University of Sci-
ence and Technology Beijing. His research includes
wireless sensor networks, networks management, sig-
nal processing of communication and computer archi-
tecture.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on August 01,2024 at 09:07:18 UTC from IEEE Xplore. Restrictions apply.

https://lucene.apache.org/index.html
http://mged.nmdms.ustb.edu.cn/analytics/
https://www.hyperledger.org/use/fabric
https://ethereum.org
https://ethereum.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

