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 ABSTRACT 

In the last decade, the field of reinforcement learning has 

evolved from single-agent paradigms to embrace multi-agent 

settings. However, as the number of agents increases, 

especially in intricate or stochastic environments, the efficacy 

of individual learning models tends to diminish. Moreover, 

applying experience replay techniques in multi-agent 

scenarios presents considerable challenges. To address these 

pressing issues, this paper introduces a straightforward yet 

highly effective approach known as Quantum-Based Multi-

Agent Reinforcement Learning (QMARL). This approach 

revolves around the quantization of states and actions within 

the multi-agent reinforcement learning system. Leveraging 

the power of the Grover algorithm for action decision-

making, we also introduce a novel quantum-based prioritized 

experience replay method. Our proposed approach has been 

rigorously validated through experiments conducted in the 

cooperative navigation environment provided by OpenAI. 

The results demonstrate its capacity to enhance multi-agent 

learning in complex settings. This research opens promising 

avenues for harnessing quantum computing techniques in the 

realm of reinforcement learning, paving the way for more 

robust and scalable solutions in multi-agent systems. 

 

Index Terms— Multi-Agent Reinforcement Learning 

(MARL), Quantum Computing, Experience Replay 

Techniques, Grover Algorithm, Cooperative Navigation 

 

1. INTRODUCTION 

In the realm of Multi-Agent Reinforcement Learning 

(MARL), a critical challenge lies in the proliferation of agents 

[1]. As the number of agents increases, individual learning 

models struggle with scalability due to the escalating 

computational demands caused by the exponential growth of 

combinatorial possibilities [2]. Knowledge reuse strategies 

emerge as a solution, simplifying the learning process by 

leveraging prior knowledge in novel tasks, thus extending the 

reach of MARL to intricate problem domains [3]. 

Parameter sharing, a proven technique in various 

applications such as communication learning [4], agent 

modeling, and cooperative games in partially observable 

environments [5], has gained prominence. Additionally, the 

success of reinforcement learning methods, like deep Q-
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networks [6], hinges on an experience replay mechanism. 

Yet, employing experience replay in a multi-agent context is 

far from straightforward, as past experiences risk 

obsolescence due to evolving agent policies over time [1].  

With the rapid development and widespread adoption of 

quantum computing technology, researchers have embarked 

on the integration of quantum computing with fields like 

machine learning and artificial intelligence. Current quantum 

reinforcement learning research falls into two primary 

categories. The first category harnesses quantum algorithms 

to enhance the efficiency of reinforcement learning. As early 

as 2008, Dong et al. [7] demonstrated that combining 

quantum algorithm characteristics could enhance traditional 

reinforcement learning algorithms, leading to a novel 

approach that blends quantum collapse and Grover's 

algorithm. The second category explores quantum-inspired 

interaction methods and classical environment quantization 

theories to devise innovative quantum reinforcement learning 

frameworks for efficiency enhancement [8-10]. 

Nonetheless, the majority of these studies concentrate on 

optimizing single-agent reinforcement learning techniques, 

with limited emphasis on optimization methods tailored 

specifically for multi-agent reinforcement learning using 

quantum paradigms. In this study, we delve into a novel 

Quantum-based Multi-Agent Reinforcement Learning (Q-

MARL) method. The primary contributions of this paper are 

summarized as follows: 

1)  Quantum-Based Action Decision Method: We 

propose a quantum-based action decision method that 

represents states and actions in the multi-agent reinforcement 

learning system using quantum encoding, enriching the 

expression of state-action pairs through quantum properties. 

Action decisions are made employing the Grover algorithm, 

offering a quantum advantage in decision-making. 

2) Quantum-Based Prioritized Experience Replay: 

To address the slow convergence issue in traditional 

reinforcement learning for path planning, we introduce a 

quantum-based prioritized experience replay method. This 

method combines the Grover search algorithm with the 

prioritized experience replay module, enabling parallel 

searching of higher-priority experiences in the quantum 

experience pool during training.  
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Figure 1. The framework of quantum-based multi-agent 

reinforcement learning (QMARL). 

3) Quantum-Based Multi-Agent Deep 

Reinforcement Learning Framework: We propose a 

comprehensive quantum-based multi-agent deep 

reinforcement learning framework. Leveraging the 

entanglement and superposition properties of quantum 

computing, our framework enhances the selection of high-

quality actions from the set of available actions. Additionally, 

it retrieves a batch of more informative experiences during 

experience replay, which in turn aids in the training of the 

actor-critic networks.  

In the subsequent sections, this paper elaborates on the 

proposed quantum-based multi-agent reinforcement learning 

method. Section 2 provides an in-depth description of the 

framework, while Section 3 encompasses the experimental 

setup, results, and comparative analyses against various 

advanced multi-agent reinforcement learning algorithms. 

Finally, Section 4 offers concluding remarks summarizing the 

contributions and implications of our approach. 

 

2. QUANTUM-BASED MULTI-AGENT 

REINFORCEMENT LEARNING 

 

2.1. Quantum-based MARL Framework 

This study involves the quantization of the state-action 

space in traditional reinforcement learning methods. It 

replaces the conventional neural network with a quantum 

variational circuit, integrating components such as the Grover 

search algorithm, a prioritized experience replay module, and 

action decision-making. We propose QMARL, a quantum-

based multi-agent reinforcement learning framework, as 

depicted in Figure 1. 

2.2. Quantum Actor Module 
In our approach, each agent incorporates two essential 

components: the variational quantum circuit (VQC) part and 

the action decision-making part. 

The VQC part receives the agent's observations, encoded 

as angles, as its input and feeds them into the quantum circuit 

[11]. These observations undergo processing within the 

parameterized network, ultimately yielding the agent's action 

probabilities. Subsequently, the output action probabilities 

are conveyed to the action decision-making component, 

denoted as 

 
Figure 2. The schematic diagram of state and action 

quantization representations. 

πθ(ut ∣ st) = softmax(f(st; θ)), 
which is used for action selection reference. 

In the action decision-making part, we integrate the 

principles of the Grover algorithm. Initially, we employ a 

quantum encoding scheme to represent the state-action pairs. 

Representing discrete states is straightforward, achieved by 

employing discrete quantum bits. Let the number of possible 

environment states be Ns . We then choose a number m 

satisfying the inequality  Ns ≤ 2
m ≤ 2Ns and use m qubits to 

represent the state set S = {|s1⟩, |s2⟩, |s3⟩, … |sNs|}. 

|s(Ns)⟩ =∑  

Ns

i=1

Ci|si⟩ ↔ |s(m)⟩ =  ∑  

11...1

s=00⋯0

 

⏞    
m

Cs|s⟩ 

When the environment's state is continuous, we have the 
option to transform continuous positions into discrete 

centroids. This can be achieved by hierarchically partitioning 

the environment, as shown in Figure 2. This not only reduces 

the required number of qubits but also simplifies system 

operations. The spatial partitioning can be further refined 

according to the specific problem's resolution and accuracy 

requirements.  

Similarly, the action space can also be represented using 

quantum bits. 

|asi
(Na)⟩ =∑  

Na

j=1

Cj|aj⟩ ↔ |as
(n)
⟩ =  ∑  

11...1

a=00⋯0

 

⏞    
a

Ca|a⟩ 

The quantumized state undergoes state transitions based 

on superpositioned quantumized actions, as illustrated in 

Figure 2. We employ the Grover algorithm for quantum 

action selection. Establishing a Grover process involves 

developing a suitable problem encoding and separately 

constructing the components of the Grover operator, namely 

the oracle Uωand diffuser UΨ. These components facilitate 

amplitude amplification techniques that transform the initial 

uniform superposition state of the search space into a state 

corresponding to a solution. 

The Uω  operator consists of two sub-modules: the T 

module and the R module. The T module performs quantum 

transitions by taking the state register and the superposition 

of actions as inputs, and it outputs the combination of all valid 

states to which the current state can transition. The R module, 

referred to as the reward feedback, identifies the target cell 

with a reward exceeding a certain threshold (the sum of the 

rewards for the output states of the T operator and the output  
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Figure 3.  Block scheme of the 𝐔𝛚 oracle for the 2 × 2 case. 

values from the network) by flipping the phase of the oracle 

qubit. After applying the required T and R operators, 

information about the solution states is conveyed through 

quantum bits that encode the search space during non-

computational stages, as depicted in Figure 3. 

Following the modification of the action qubits' 

amplitudes using the Grover algorithm with a specific 

number of iterations, we observe the action qubits to 

determine the desired action for execution. 

 

2.3. Quantum Experience Replay Module 
In a prioritized experience replay mechanism, the priority of 

an experience, denoted as Pk, is defined based on a criterion 

that effectively identifies important and valuable experiences 

for replay [12]. During each training iteration, the agent 

interacts with the environment at time step t, retrieves 

necessary state and reward information, and generates a state 

transition by selecting an action. This sequence of states, 

actions, rewards, and next states, denoted as <st, at, rt, st+1,>, 

is considered as an experience. The TD-error of this 

experience is computed and stored together with the 

experience in an experience pool.  

We introduce a hyperparameter, denoted as α to control 

the preference of sampling between uniform and greedy 

strategies. When α =0, uniform sampling is employed, 

whereas α=1 corresponds to greedy sampling. By adjusting 

this control value, we prioritize experiences with higher 

priority pk during the search process. 

For an experience pool with size N, it requires ⌈log2(N)

⌉quantum bits for storage and ⌈log2(k)]⌉ quantum bits for 

indexing, encoding the pool into quantum state basis vectors. 

Each data entry necessitates ⌈ log2(N) ⌉  conditional non-

quantum gates. With this encoding, each experience 

corresponds to an index. By utilizing Grover's search on the 

experience pool, we can search for experiences with higher 

priority. When observing the index, we obtain the experience 

index that satisfies our search task, as shown in Figure 4.  

 

2.4. Quantum Critic Module 

The Quantum Critic Module consists of a Quantum Critic, 

where we employ Concentrated Temporal Difference (CTDE) 

as the state-value function. States and actions are encoded 

using quantum angles and input into a Variational Quantum 

Circuit (VQC). The output is the state-action value function, 

which is used to update the network in the Quantum Actor. 

The Q-network loss function is defined as follows: 

 
Figure 4. Quantum superposition processing of experiences 

categorized as good or bad based on TD errors. 

yj = ri
j
+γQi

μ
′

(x′j, a1
′
, … , aN

′
)|
a
k
′
=μk

′
(ok
j
)

 

ℒ(θ
i
) =

1

S
∑j  (y

j − Qi
μ
(xj, a1

j
, … , aN

j
))

2

 

Here, ri represents the global reward. Compared to classical 

neural networks, quantum neural networks possess better 

expressive power and require fewer parameters for training. 

 

3. EXPERIMENTAL ANALYSIS AND DISCUSSION 

 

This section focuses on demonstrating the effectiveness and 

superiority of the quantum-based multi-agent reinforcement 

learning approach through concrete experiments. 

 

3.1. Experimental Setup 

Based on the Multi-Agent Particle Environment (MPE) 

provided by OpenAI, this study constructs the Cooperative 

Navigation with Obstacles (CNO) environment to investigate 

the quantum-based multi-agent reinforcement learning 

problem [13]. The CNO experimental environment is 

illustrated in Figure 5. The experiment is set up with three 

agents (circular entities) and ten obstacles (square entities). 

At the beginning of each episode, the coordinates of all 

elements in the environment are randomly initialized. The 

agents must collaborate and navigate to reach the landmarks 

(pentagon symbols) while avoiding obstacles. Agents need to 

observe the relative positions of other agents and landmarks 

to learn cooperation and receive rewards based on their 

proximity to the landmarks.  

3.2. Experimental Results 
The initial training iteration for the agents is set to 

15,000 rounds, with each iteration consisting of 25 steps. 

Once the buffer accumulates 1,000 interaction rounds, the 

agents' Actor-Critic (AC) network begins training. Training 

concludes when the maximum iteration limit is reached, and 

the trained model is saved. 

To validate the superiority of the quantum-based multi-

agent reinforcement learning algorithm, a comprehensive 

comparison was conducted with five baseline algorithms in 

the paper, namely MADDPG [13], VDN [14], COMA [15], 

QMIX [16], and QTRAN [17]. The paper compared the  
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Figure 5. The CNO environment with three agents. 

rewards obtained during the training process by the quantum-

based multi-agent reinforcement learning method and the five  

 

Table 1. Comparison of performance metrics of QMARL and 

different algorithms in the CNO environment. 

Paramet

er index 

QMARL MAD

DPG 

COM

A 

QTRA

N 

VDN QMIX 

Average 
round 

reward 

286.558 266.17
7 

267.10
7 

267.68
2 

269.59
2 

269.30
9 

Distance 

from 

landmar
ks 

0.459 0.578 0.581 0.589 0.588 0.591 

Average 

round 

collision

s 

3.877 6.336 5.5742 5.1594 4.676 4.278 

Average 

path 

length 

24.451 31.723 31.605 32.774 32.632 31.581 

 

baseline algorithms, as shown in Figure 6. After reaching 

convergence, the paper further compared the quantum-based 

method with the baselines in terms of average episode 

reward, distance to the target, average episode length, and 

average collision count with obstacles. The statistical results 

are presented in Table 1. 

These results demonstrate that QMARL outperforms the 

baselines in terms of average episode reward, distance to the 

target, collision count, and episode path length. It showcases 

the ability of the quantum-based approach to enable agents to 

navigate to the target more efficiently in the cooperative 

navigation with obstacles scenario. 
To validate the effectiveness of the proposed quantum 

module for solving multi-agent reinforcement learning 

problems, this paper conducts ablation experiments on the 

QMARL method from the following aspects. Firstly, the 

quantum module, as the differing factor between MADDPG 

and QMARL, provides a baseline for ablation (with or 

without the quantum module) to verify the effectiveness of 

the quantum module. Secondly, to validate the effectiveness 

of the quantum experience replay module in the quantum-

based multi-agent reinforcement learning framework, this 

paper compares the methods with and without the quantum 

experience replay module. The comparison results are shown  

 
Figure 6. Reward variation of QMARL and multiple baseline 

algorithms. 

 
Figure 7. Reward variation before and after the introduction 

of the quantum experience replay module. 

in Figure 7. In the CNO environment, the method with the 

quantum experience replay module converges faster than the 

method without the quantum experience replay module and 

MADDPG.  

These findings provide strong evidence for the 

effectiveness of the quantum-based multi-agent 

reinforcement learning method and its components, including 

the quantum module and the quantum experience replay 

module, in addressing multi-agent reinforcement learning 

problems. 

 

4. CONCLUSION 

In this study, we propose a quantum-based multi-agent 

reinforcement learning algorithm and validate it in a 

cooperative navigation scenario. The Grover algorithm is 

employed to make action decisions for the agents, enabling 

them to learn optimal strategies in the current environment. 

Additionally, the quantum experience replay method 

effectively facilitates the training of a centralized critic in 

multi-agent systems. When compared to various multi-agent 

reinforcement learning algorithms in the same scenario, the 

intelligent agent system trained using the quantum-based 

multi-agent reinforcement learning algorithm achieves higher 

average round rewards and requires fewer rounds. 
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