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Abstract— In complex and unknown environments, achieving precise localization
and real-time mapping stands as a critical requirement for agent navigation and
scene comprehension. However, conventional localization methods, which rely
on single sensors such as Inertial Measurement Units (IMUs) or Ultra-wideband
(UWB) sensors, often face challenges in maintaining high precision within these
intricate settings. Consequently, the task of achieving accurate self-localization
and constructing topological maps becomes increasingly daunting. To tackle this
challenge, we introduce a collaborative localization and mapping approach that
harnesses data from both IMU and UWB sensors. We employ factor graphs as the
representation model, treating observations, states, and constraints as factors
within the graph. The IMU provides vital attitude and acceleration information,
while the UWB sensor contributes valuable distance observations. Through the
maximization of posterior probability, we estimate the agent’s position and create
the map. Our comprehensive evaluations conducted in physical environments
conclusively demonstrate the effectiveness of our method in achieving accurate
localization and mapping.

Index Terms— factor graph; multi-source heterogeneity; data fusion; localization;
multi-target collaboration.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a vital
technology used in various fields like search and rescue,
enabling robots to explore unknown underground and indoor
environments [1]. The primary objective of SLAM is to
estimate the agent’s pose and motion over time, including its
position, and construct a map of the surrounding environment
using measurements from one or multiple sensors. However,
achieving robust accuracy, especially in challenging indoor
environments with adverse multipath channel conditions, re-
mains a challenge [2]. These conditions often lead to percep-
tual degradation due to geometric reflections and obstructions,
resulting in accumulated drift in position estimation. To tackle
this, current systems supporting multipath channels either
employ sensor technologies that mitigate multipath effects or
fuse multiple sources of information [3], [4].

Multisensor data fusion is a crucial research area, especially
in applications involving multi-target coordination and swarm
intelligence-based localization. However, fusing multimodal
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heterogeneous data presents challenges. It involves combining
information from multiple sensors and processing it accord-
ing to specific rules to make corresponding judgments or
decisions. For example, an IMU/GPS integrated navigation
system can achieve centimeter-level positioning accuracy in
vehicle navigation but may not provide smooth positioning
services in densely built city centers. On the other hand,
the IMU/TOA fusion method combines independent mea-
surements of IMU and the instantaneous high accuracy of
TOA, offering a reliable solution for long-term and large-span
positioning requirements, though it requires the deployment of
fixed base stations for transmitting signals in advance, which
can be expensive [5], [6].

In the context of multi-agent systems, there is a growing
interest in achieving coordination and collaborative operations
of heterogeneous systems in uncertain environments. For in-
stance, a group of aerial and ground vehicles may possess
different sensing, computing, and communication capabilities,
or they may have different models and target sets. There-
fore, sharing information in a scalable and modular manner
becomes a key issue. When the underlying task requires het-
erogeneous robotic teams to perform local inference of certain
quantities (states) of the system or environment, the problem
then transforms into a data fusion problem. This research
primarily focuses on data fusion algorithms, constructing a
multi-sensor information fusion model, and deriving factor
graph representations and nonlinear least squares formula-
tions of probabilistic models. By adopting the approach of

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3316278

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on October 16,2023 at 07:39:30 UTC from IEEE Xplore.  Restrictions apply. 



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

local/joint factors, we address the challenges faced by multi-
source heterogeneous data fusion in achieving collaborative
localization in multi-agent systems.

The main contributions of this study are as follows:
1) Factor Graph-Based Heterogeneous Data Fusion

Method: We propose a factor graph representation for
the collaborative SLAM problem, defining the problem
using general terminology to describe graph operations.
We show that messages between agents can be treated as
factors and added to the local views of receiving agents,
allowing us to fuse asynchronous information accurately,
thereby improving data fusion accuracy and efficiency.

2) Factor Graph-Based Belief Propagation: We present a
Bayesian detection and estimation algorithm based on
Belief Propagation (BP) for estimating the state of mo-
bile agents and the locations of beacons. Our algorithm
simultaneously performs probabilistic data fusion and
sequential estimation of the agent’s state. BP operates
on the factor graph representing the SLAM problem,
leveraging conditional statistical independence for low
complexity and high scalability.

3) Method Validation: We evaluate the proposed algo-
rithm’s performance using synthetic and real-world data.
Experimental results demonstrate the algorithm’s high
accuracy and robustness compared with state-of-the-arts.

The subsequent content of this paper is organized as follows:
Section II discusses related research and Section III defines
the problem. Section IV describes the system framework for
cooperative localization and mapping based on factor graph.
Section V presents the construction process of the factor
graph algorithm. Section VI provides simulation and physical
experimental results. Finally, Section VII concludes the paper.

II. RELATED WORK

A. Filtering-based Data Fusion
In recent years, multi-sensor information fusion technology

has gained significant attention in navigation research [1].
Traditional inertial navigation systems can only provide ac-
curate results for a short time, and accumulated errors may
reduce navigation accuracy, requiring auxiliary observations
for bias correction. The widely used method is the Extended
Kalman Filter (EKF) algorithm [7], known for its real-time
computational efficiency. However, when dealing with high-
dimensional state variables, integrating measurements from
sensors can lead to higher computational costs, impacting real-
time performance. To address the challenges of navigation
accuracy and computational cost, Xu et al. [8] proposed a
joint Extended Finite Impulse Response (EFIR) filter that
fuses information from multiple sensors, improving navigation
accuracy. Yet, in practical applications, integrated navigation
systems usually use sensors with different update rates, requir-
ing time alignment before information fusion [9], which adds
complexity to the fusion process. In multi-sensor integrated
navigation systems, situations where certain sensors become
unavailable often occur, necessitating quick navigation system
response to recover accuracy. Xiong et al. [11] proposed a
robust and fault-tolerant joint filter to enhance navigation

system stability. Although joint filters are widely used due
to their flexibility and fault-tolerant capabilities, their frame-
work needs to be rebuilt when adding or removing sensors.
Therefore, there is a need for research on real-time adaptive
fusion methods in multi-sensor data fusion.

B. Probabilistic Graph Models and Factor Graphs
Factor graphs [13] offer a flexible and efficient approach

for implementing multi-sensor information fusion using graph
optimization algorithms [14], [15]. In the factor graph frame-
work, sensors are represented as separate factor nodes, and
each node only needs to provide connectivity information to
other nodes. This modular design allows easy integration of
new sensors by simply adding a new node and connecting it to
the existing nodes. This adaptability makes factor graphs suit-
able for various application scenarios. The Bayesian inference
algorithms within factor graphs automatically update fusion
results when new sensor nodes are added, enabling plug-
and-play functionality. Previous work by Paskin et al. [16]
addressed distributed inference in static sensor networks using
message passing algorithms on a connected tree. However,
this approach was limited to static variables and required
constructing the tree before performing inference. Makarenko
et al. [17] extended Paskin’s algorithm for dynamic states
in the Bayesian Distributed Data Fusion (DDF) problem,
but it was limited to single common states in homogeneous
problems. While some works explored Bayesian networks and
information maps to identify conditional independence and
track common information [18], they did not fully exploit
the potential of Probabilistic Graphical Models (PGMs) for
distributed data fusion [19].

C. Optimization Methods for Ranging Beacons
Range measurements from range beacons are commonly

processed using multilateration methods to determine posi-
tioning information [22], [23]. The most common approaches
include Maximum Likelihood Estimation (MLE) solutions,
such as least squares optimization [22] or Particle Swarm
Optimization (PSO) [23]. Another promising optimization
method is the Pose Graph SLAM framework, as demonstrated
by Wang et al. [15] and Fang et al. [24]. These methods
show that range measurements can effectively aid in local-
ization, either through direct optimization or by integrating
them into the Pose Graph SLAM. However, it’s worth noting
that these traditional methods have been primarily tested in
indoor environments using range beacons with known posi-
tions. Therefore, challenges still exist when applying these
methods in scenarios with sparsely deployed range beacons.
Addressing these challenges and finding efficient solutions for
such scenarios are areas of further research..

III. PROBLEM DEFINITION

A. State Model
In a two-dimensional scenario, the target nodes can ac-

quire interaction information with other target nodes through
internal and external sensors, enabling the estimation and
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Fig. 1: The trajectory and sensing data of moving target nodes.

localization of the mobile nodes. During motion, mobile robots
utilize an Inertial Measurement Unit (IMU) to control their
posture, which consists of accelerometers, gyroscopes, and
sometimes magnetometers [25]. However, IMUs often suffer
from accumulated errors, requiring additional sensors such as
UWB sensors to calibrate the biases and make more accurate
predictions. Fig. 1 presents the random walk model [26] for
the target nodes, where the linear acceleration AS and angular
velocity WS can be obtained from the IMU, and distance
measurement dt can be measured using UWB. The agent can
estimate the velocity V , accelerometer bias Ab, gyroscope
bias W b, position coordinates B, and attitude q of the agent
by acquiring the IMU’s linear acceleration AS and angular
velocity WS . The noise during motion includes velocity εV ,
attitude εq , angular velocity bias εAb , and gyroscope bias εW b .
Therefore, the state vector x, control vector u, and error vector
ε can be defined as:

x =


V
Ab

W b

B
q

 , u =

[
AS

WS

]
, ε =


εV
εq
εAb
εW b

 (1)

The state transition function is defined as:

Xt = Q(xt, ut, εt) =



Vt−1 + (Rq(t−1)(A
S
t + Abt−1 + ε

Ab
))∆t + εV

Abt−1 + ε
Ab

Wb
t−1 + ε

Wb

Bt−1 + (Vt−1 + εV )∆t + 1
2
(Rq(t−1)(A

S
t + Abt−1 + ε

Ab
))(∆t)2

qt−1 + q(WS
t +Wb

b−1 + ε
Wb )∆t + εq


(2)

In addition, the random walk follows a first-order hidden
Markov model. The state of the moving target Xt at time t
can be obtained by transitioning from the state Xt−1 at time
t− 1. The state transition equation is as follows:

Xt−1 = Xt + f(Xt, Xt−1) (3)

where f(Xt, Xt−1) is used to connect with variable nodes:

f(Xt, Xt−1) =



Xt = Q(xt, ut, εt)

(Rq(t−1)(A
S
t + Ab

t−1 + ε
Ab ))∆t+ εV

ε
Ab
ε
Wb

(Vt−1 + εV )∆t+ 1
2 (Rq(t−1)(A

S
t + Ab

t−1 + ε
Ab ))(∆t)2

q(WS
t +W b

b−1 + ε
Wb )∆t+ εq


(4)

B. Measurement Model
The measurement model is typically used to combine

measurements with prior information to update the target’s
state, which is based on measurements obtained from wireless
signals or sensors such as UWB and can be represented as:

d̂i,j = di,j + ω1 (5)

where ω1 is the Gaussian-distributed distance noise, and di,j
represents the true distance measurement obtained by UWB
between the target’s position (xi, yi) and (xj , yj), i.e.,

di,j =
√

(xi − xj)2 + (yi − yj)2 (6)

C. Factor Graph Representation
A factor graph is an undirected bipartite graph. In the factor

graph G = {F,Θ, ε}, the probability densities of Θ in the
factor graph are represented as:

P (Θ|Z) =

|F |∏
i=1

P (Θi|Zi) =

|F |∏
i=1

φi(Θi) (7)

where the factors φi can be mainly divided into local factors
and joint factors. Local factors capture the information within
individual entities, while joint factors capture the interaction
information between different entities, as shown in Fig. 2.

IV. INFORMATION FUSION BASED ON FACTOR GRAPH

A. Definition of Factors
1) Local Factors: They are classified into prior factors and

measurement factors.
• Prior factors: They contain all the initial states of the

agents, including position, velocity, attitude, and initial
errors. The prior factors are unary factors, defined as:

fprior(x) = d(x) (8)

Generally, for Gaussian distributions, the prior factor can
be represented using mean µx and covariance Σx, namely

fprior(x) = d(xi) = exp(−1

2
‖x− µx‖2Σx) (9)

The prior factors are usually added at the initialization
and play a crucial role in the solving process.

• Measurement factors: They are established based on
the measurements obtained by the agent itself or external
sensors and generally interact with other nodes, e.g., the
initial position, acceleration, angle information, etc. The
measurement factor for a state can be defined as:

fmeasure(∗) = d(Zmeasure − hmeasure(∗)) (10)

where Zmeasure is the measurement value, and
hmeasure(∗) represents the observation function. Com-
mon measurement factors include odometry factors,
UWB factors, etc. Moreover:

Zmeasure = hmeasure(∗) + nmeasure (11)
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Fig. 2: The classification of factor graphs: In multi-agent
cooperative localization scenarios, yellow squares represent
prior factors, black squares represent measurement factors, and
gray squares represent joint factors.

where nmeasure is the measurement noise.
2) Joint Factors: Joint factors play a crucial role in capturing

and facilitating information exchange between various entities,
including range measurements among multiple agents. This
real-time message passing occurs as agents move and interact
with each other. For instance, in a multi-agent collaborative
localization process, one agent’s localization estimate for
another agent can be represented as an observation factor, with
the measurement value denoted as:

zjointi (xi) = hjoint(xi) + njoint (12)

where zjointi represents the localization information obtained
at the current time, hjoint(∗) represents the observation func-
tion, and njoint represents the noise. In the factor graph, this
observation factor can be represented as:

f joint(xi) = d(zjointi − hjoint(xi)) (13)

B. Dynamic Construction
In the multi-agent collaborative localization process, the

state includes various factors such as the agent’s attitude,
the positions of external landmarks, estimated positions of
other agents, and auxiliary variables like sensor biases and
sensor calibration. At time ti, the state of an individual agent
(including position, velocity, attitude, etc.) is denoted as xi.
Sensor information, estimates of other agent positions, and
other external data are represented as measurements of the
agent at a specific time. Let Zk = zi

k
i=1 represent all the

collected measurements from time t1 to tk, and Xk = xi
k
i=1

represent the states. The joint probability density is expressed
as P (Xk|Zk). The state estimation involves finding the maxi-
mum posterior probability of the state given the observations:

X∗k = argmax
Xk

P (Xk|Zk) (14)

The algorithm flow for dynamically constructing the fac-
tor graph for multi-agent collaborative fusion localization is
presented in Algorithm 1. In this algorithm, Xk,1:N rep-
resents the state set of N agents at time k. Moreover,

Algorithm 1 Factor Graph-Based Multi-Sensor Fusion

Input: Ak = [Xk,1:N ]← The prior information of the initial
state; P (X/Z) = 1← Joint probability density

Output: X∗k,1:N ← The posterior position information of all
states

1: for k ← 0, 1, 2, . . . ,K do
2: for ( don← 0, 1, 2, . . . , N )
3: if Zpriork,n then
4: P (Xk,n/Z

prior
k,n ) = fprior(Xk, n)

5: end if
6: if Zmeasurementk,n then
7: P (Xk,n/Z

measurement
k,n ) =

fmeasurement(Xk, n)
8: end if
9: if Zobservedk,n then

10: P (Xk,n/Z
observed
k,n ) = fobserved(Xk, n)

11: end if
12: if Zjointk,n then
13: P (Xk,n/Z

joint
k,n ) = f joint(Xk, n)

14: end if
15: end for
16: X∗k = argmax

Xk,1:N

P (Xk,n|Zk,n)

17: end for

Zpriork,n , Zmeasurementk,n , Zobservedk,n , and Zjointk,n represent the
measurement values of the prior factor, measurement factor,
observation factor, and joint factor, respectively, for the nth
agent at time k.

C. Optimization and Solving
In the factor graph G = {F,Θ, ε}, the factorization can be

obtained as follows:

f(Θ) =
∏
i

fi(Θi) (15)

The set of variables adjacent to factor fi is denoted by Θi,
where each fi is a function of the variables in Θi. The main
objective is to find the optimal set Θ∗ that satisfies:

Θ∗ = argmax
Θ

f(Θ) (16)

The measurement model is assumed to be a Gaussian, namely

fi(Θi) ∝ exp

(
−1

2
‖hi(Θi)− zi‖2Σi

)
(17)

The expression hi(Θi) represents the measurement function
model, i.e., the theoretical value, and zi represents the mea-
sured value. The objective function is then transformed into
minimizing a nonlinear least squares problem:

Θ∗ = arg min
Θ

(− log f(Θ)) = arg min
Θ

∑
i

‖hi(Θi)− zi‖2Σi
(18)

To transform the nonlinear least squares problem in Equa-
tion (18) into a linearized form, common approaches include
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the Gauss-Newton iteration method [27] or the Levenberg-
Marquardt algorithm [28]. These methods are used to iter-
atively solve the nonlinear equations and approximate the
minimum value. During the iteration process of the non-
linear solver, linearization is performed around Θ, also
known as whitening, denoted as: ||e||2Σ , e>Σ−1e =
(Σ−1/2e)>(Σ−1/2e) = ||Σ−1/2e||22. As a result, a new stan-
dard least squares problem is obtained:

∆∗ = arg min
∆

∑
i

‖Ai∆i−bi‖22 = arg min
∆
‖A∆−b‖22 (19)

where ∆ represents the state update, A ∈ Rm×n denotes
Jacobian matrix of order m× n, and b is the prediction error.

During the iterations, once ∆ is determined, it is added to
Θ to obtain the new estimate Θ ⊕ ∆ for the next iteration
of nonlinear optimization. In most cases, simple addition is
used for ⊕. However, when dealing with quaternions for 3D
rotation and mapping, relevant Lie groups [29] are utilized
instead. The probability distribution at ∆ is defined as:

P (∆) ∝ e− log f(∆) = exp−1

2
‖A∆− b‖22 (20)

The minimum value of A∆ − b can be obtained using
Cholesky [30] or QR decomposition [31].

V. COOPERATIVE SLAM BASED ON FACTOR GRAPH

This section presents the sensor factor models, including
the IMU factor, UWB factor, and joint factor based on UWB
information. The goal is to fuse IMU and UWB sensor data in
a factor graph to enhance positioning accuracy. Additionally,
the method of IMU fusion for UWB mapping based on the
factor graph is described, which enables the estimation of
unknown UWB beacon positions using sensor information.

A. Factor Modeling

1) IMU Factor: The IMU (Inertial Measurement Unit) is a
sensor unit used to measure object acceleration and angular
velocity, consisting of an accelerometer and a gyroscope.
The IMU factor establishes constraints on IMU data in the
factor graph, allowing fusion with other sensor data. The
representation of the IMU factor is shown in Fig. 3, where the
green hollow circles represent the state variable nodes, yellow
hollow circles represent the error variable nodes, black solid
circles represent the IMU factor nodes, and blue lines represent
the edges in the factor graph. The IMU factor connects two
adjacent state variable nodes.

Assuming the state of an entity at time t is denoted by
x, which includes various parameters such as velocity V , ac-
celerometer bias Ab, gyroscope bias W b, position coordinates
B, and attitude q. The IMU provides measurements of linear
acceleration AS and angular velocity WS . The sensor error
model is represented by ε. By utilizing Equation (4), we can
derive the measurement information and observation function:

ZIMU =

[
AS

WS

]
(21)

Fig. 3: IMU factor schematic diagram.

X = hIMU (x, ε, u) = hIMU (x, ε, ZIMU ) (22)

By utilizing the IMU measurement information ZIMU , we
can establish a connection between the states Xk and Xk+1

at two consecutive times tk and tk+1, namely

Xk+1 = hIMU (Xk, εk, zk) (23)

εk+1 = gbias(εk) (24)

The equations above define the IMU factor node f IMU

to connect adjacent states Xk and Xk+1, and the bias factor
node f bias to connect adjacent variable nodes εk and εk+1.
For Gaussian distributions, the prior factor can be represented
using mean and covariance as indicated by the error functions
in Equation (8) and (9), the error can be calculated as follows:

f IMU (Xk+1, Xk, εk) = d(Xk+1 − hIMU (Xk, εk, zk)) =

exp

(
−1

2

∥∥Xk+1 − hIMU (Xk, εk, zk)
∥∥2

Σi

)
(25)

f bias(εk+1) = d(εk+1 − gbias(εk)) =

exp

(
−1

2

∥∥εk+1 − gbias(εk)
∥∥2

Σi

)
(26)

Based on the analysis above, we can deduce the factor graph
structure of the IMU in the factor graph-based multi-sensor
information fusion localization. Fig. 3 illustrates that the IMU
factor is connected to adjacent states and sensor biases. The
IMU operates at a higher frequency compared to other sensors,
and to address the asynchronous issue in multi-sensor fusion,
IMU preintegration and variable elimination are employed,
which helps reduce computation.

2) UWB Factor: The UWB (Ultra-Wideband) factor is an-
other type of factor utilized for multi-sensor information
fusion, specifically designed for fusing UWB measurement
data. UWB factors are widely used in localization and tracking
applications due to their capability of providing highly accu-
rate distance measurements. The entity itself is equipped with
UWB nodes that receive distance data from UWB beacons
placed at different positions, enabling the estimation of its own
position. Fig. 4 represents the UWB factor, where the green
hollow circles correspond to state variable nodes, blue lines
depict edges in the factor graph, black solid circles represent
the IMU factors, and gray solid circles represent the UWB
factors. UWB factors typically have a much lower data rate
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Fig. 4: UWB factor schematic diagram.

than IMU factors and are generally unary factors.
Assuming that an UWB module is installed on the agent,

and there are n beacons placed on the ground, where n ≥ 3.
At time i, the distance measurement between the agent Xi

and the k-th UWB base station pk can be represented as ri,k.
Therefore, the observation function of the UWB factor can be
expressed as:

hUWB(Xi, pk) = ‖Xi − pk‖ (27)

The UWB factor can be represented based on the rela-
tionship between the measurement value and the observation
function as follows:

fUWB(Xi, pk, ri,k) = d(ri,k − hUWB(Xi, pk)) =

exp

(
−1

2

∥∥ri,k − hUWB(Xi, pk)
∥∥2

Σi

)
(28)

The UWB measurement value, ri,k, is solely related to the
position of the entity, making the UWB factor a unary factor.

3) Joint Factor: In factor graph-based multi-sensor infor-
mation fusion involving multiple entities, it is essential to
consider the fusion and cooperation of information between
entities. For this purpose, joint factors are employed to model
the interaction and constraints between multiple entities. The
schematic diagram of joint factors is shown in Fig. 5, where
the green hollow circle represents the state variable node of the
first entity, the red hollow circle represents the state variable
node of the second entity, the blue lines represent the edges in
the factor graph, and the black solid circles represent different
factor nodes. The joint factor nodes connect two variable nodes
that can receive UWB distance measurements.

When using UWB sensors for multi-entity localization,
each entity can measure the distance between itself and
other entities using UWB. Therefore, the distance information
between each entity can be encoded as observation values,
and then these joint information values can be associated with
the joint state variables using distance observation functions.
The joint state variables include the position and velocity
information of each entity, and the joint factor combines
the distance information with these state variables using the
distance observation function.

Similar to the representation of the measurement value in
the UWB factor, the joint information value in the joint factor
represents the distance ri,j between entity i and entity j, and
the states of entity i and entity j are represented by Xi and
Xj , respectively. The joint function is defined as:

hjoint(Xi, Xj) = ‖Xi −Xj‖ (29)

Fig. 5: The schematic diagram of joint factors.

Thus, for Gaussian distributions, the factor can be represented
using mean and covariance as indicated by Equation (8) and
(9), the UWB-based joint factor is obtained:

fjoint(Xi, Xj , ri,j) = exp

(
−1

2

∥∥ri,j − hjoint(Xi, Xj)
∥∥2

Σi

)
(30)

The joint factor is related to the positions of entity i and j,
making it a binary factor. The construction process is shown
in Fig. 5.

B. Localization
In the context of multi-sensor fusion localization, the goal

is to estimate the position and orientation of the target us-
ing measurements from multiple sensors. This is achieved
by establishing a mathematical model that combines sensor
measurements with the motion model. Fig. 6 illustrates the
concept of IMU fusion with UWB localization based on factor
graphs. The green hollow circles and yellow hollow circles
represent the state variable nodes and error variable nodes
of the first entity, respectively. The red hollow circles and
purple hollow circles represent the state variable nodes and
error variable nodes of the second entity, respectively. The
blue lines represent the edges in the factor graph, and the
black solid circles represent different factor nodes. The factor
nodes mainly include IMU factors, UWB factors, and UWB-
based joint factors. The optimization objective function for
factor graph optimization is defined as follows:

arg min
X

(− log fij(X,Zij)) (31)

where X represents the set of all unknown position and
orientation variables, Zij represents the j − th measurement
from the i − th sensor, and fij is a nonlinear cost function
related to X and Zij .

The IMU and UWB sensors operate at different data rates,
but their timestamps are aligned after data preprocessing.
IMU factors connect adjacent state variables, and when UWB
information is received, UWB factor nodes and joint factor
nodes are introduced into the factor graph. By solving equation
(31), the motion state at each time step can be obtained.

C. Mapping
In the mapping problem, the objective is to construct a

map based on sensor data, which involves estimating the
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Fig. 6: Schematic diagram of IMU fusion UWB positioning
based on factor graph.

Fig. 7: Schematic diagram of IMU fusion UWB mapping
based on factor graph.

positions of UWB beacons. This is achieved by representing
the constraint relationship between sensor measurements and
map features as factors in the factor graph. Factor graph opti-
mization algorithms are then used to optimize these constraints
and obtain the optimal map estimation.

Fig. 7 illustrates the concept of IMU fusion with UWB
mapping based on factor graphs. The green hollow circles
represent the state variable nodes of the entity, the red hollow
circles represent the state variable nodes of the UWB ranging
beacons, the blue lines represent the edges in the factor graph,
and the black solid circles represent various factors. In this
case, the variable set includes the estimated positions of UWB
beacons. Therefore, the objective function for multi-sensor
fusion mapping is defined as follows:

arg min
(X,Y )

(− log(fij(X,Zij) + fk(Yk))) (32)

where X represents the set of all unknown position and orien-
tation variables of the entity, Zij represents the measurement
between the i−th UWB ranging beacon and the entity at time
step j, YK represents the position of the k− th UWB beacon,
fij is a nonlinear cost function related to X and Zij, and
fk is a nonlinear cost function related to Yk. The objective
function consists of two parts: the entity’s self-localization
and the estimation of UWB beacon positions. By minimizing
the objective function, the optimal position and orientation
variables of the entity and the position variables of UWB
beacons can be obtained.

The estimation of the entity’s self-state follows the method
described in Section V-B. In the process of estimating UWB
beacon positions, the UWB factors transition from unary fac-
tors to binary factors. When the entity receives UWB ranging
information at time step j, UWB factors are established, and
the positions of the beacons are also estimated. Therefore, by
solving equation (32), the motion state of the entity at each

Fig. 8: (a) The scene for physical experiment. (b) The auto-
robot and sensors used for the test.

time step and the positions of UWB beacons can be obtained.

VI. EXPERIMENTS AND ANALYSIS

A. Experimental Setup
We set up four auto-robots [32], which is equiped with

UWB and IMU sensor swith a sampling frequency of 200Hz
and 10Hz, respectively, in a physical field (10m×10m), as
shown in Fig. 8, and let them walk in random walk motion.
The hardware configuration of the personal computer includes
a 6-core Intel i7 CPU and 16 GB RAM, running on a 64-
bit Windows 10 operating system. The sensor information and
position data are collected during the experiments. The ground
truth is captured by the NOKOV optics motion tracking system
[33]. The IMU provides motion data for the entities, while
the UWB sensors are used to estimate joint factors for multi-
agent cooperative localization, sampling in 100 Hz and 10 Hz,
respectively. Furthermore, the trajectory paths and localization
errors are considered to evaluate the algorithm’s performance.

B. Multi-Agent Localization
The objective of this experiment is to validate the ef-

fectiveness of the algorithm by comparing the localization
performance with varying numbers of entities. The experiment
utilizes the simulated scenario depicted in Fig. 8, with the
same four beacon positions. By introducing different numbers
of entities, we compare the localization performance, and
the results demonstrate that the proposed algorithm achieves
reduced localization errors that stabilize as the number of
entities increases.

In the specific experiment, Fig. 9 illustrates the localization
errors under different numbers of entities. It shows that as the
number of entities increases, the localization errors gradually
decrease and stabilize after reaching a certain level. This
indicates that the proposed multi-agent, multi-sensor fusion
localization algorithm possesses good robustness and accuracy.

Furthermore, Fig. 10 illustrates the cooperative localization
errors of four entities, which stabilize within 0.1 m. These
results further demonstrate the good localization performance
of the proposed algorithm under multi-agent cooperation.

Based on this experiment, we can conclude that the pro-
posed multi-sensor fusion localization algorithm based on
factor graphs exhibits excellent localization performance under
multi-agent cooperation. It effectively reduces localization
errors and is applicable to larger and more complex scenarios,
displaying scalability. This algorithm holds significant appli-
cation value for multi-agent localization in practical scenarios.
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Fig. 9: Positioning error under different numbers of agents.

Fig. 10: Error map for collaborative positioning of four
intelligent agents.

C. Multi-Agent Mapping
In this experiment, we employ the multi-agent fusion

mapping approach using sensor information to estimate the
positions of the entities and four UWB ranging beacons. The
data from IMU and UWB sensors are collected in the same
experimental scenario as described in Section VI-B, where
four UWB ranging beacons have initially unknown positions.
The entities move through random walks in the scenario,
recording their own positions and the distance information
to the four beacons. We use the factor graph approach for
mapping and information fusion to obtain more accurate
position estimation results.

Fig. 11 illustrates the localization errors of the entities when
the positions of the ranging beacons are initially unknown,
with errors stabilized within 0.5m for all four entities. Fig. 12
represents the mapping errors of UWB when the positions of
the ranging beacons are initially unknown. By analyzing the
localization error graph of the four beacons, it can be observed
that the localization errors gradually decrease and stabilize
within a small range. This demonstrates the effectiveness of
the factor graph approach for solving the mapping problem
and obtaining high-precision localization results.

In summary, this experiment validates the effectiveness of
the factor graph approach for multi-agent fusion mapping, pro-
viding reasonably accurate estimation results of the positions
of the entities and beacons. These results offer a solution for
mapping in multi-agent systems and provide valuable data and
experience for research and applications in related fields.

Fig. 11: The positioning error of the intelligent agent under
the initial unknown condition of the ranging beacon.

Fig. 12: UWB mapping error in the case of unknown initial
range beacon.

D. Robustness Analysis

To validate the influence of different experimental parame-
ters on the algorithm’s performance, an analysis is conducted
on parameters such as the number of target beacons and
communication range.

1) Number of Beacons: In order to conduct a more in-depth
analysis of the impact of the number of beacons on different
sensor fusion algorithms, this study investigates the effect
by varying the number of UWB beacons. Filed comparison
tests are conducted using state-of-the-art EKF [34], and PF
[35] algorithms, and the factor graph-based fusion algorithm.
The experiments test the cases of simultaneously receiving
different numbers of beacons and record the estimation errors
of both the entities and beacons. Fig. 13 and Table I summarize
the results of the experiment, showcasing the estimation errors
for different algorithms under varying numbers of beacons.
This analysis provides insights into the robustness of the factor
graph-based fusion algorithm compared to others.

The experimental results clearly demonstrate that the factor
graph-based fusion algorithm achieves superior localization
accuracy, especially under different numbers of beacons. When
compared to other traditional localization algorithms, the fac-
tor graph-based fusion algorithm exhibits better scalability
and applicability, making it well-suited for localization tasks
in large-scale scenarios. As a result, the proposed algorithm
proves to have excellent scalability and offers a more reliable
localization solution for practical applications.
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TABLE I: Average errors (m) under different number of beacons.

Algorithm Average error
of 3 beacons

Average error
of 4 beacons

Average error
of 5 beacons

Average error
of 6 beacons

Average error
of 7 beacons

EKF [34] 0.572473 0.407710 0.451948 0.386859 0.471585
PF [35] 0.245112 0.152310 0.132196 0.081148 0.079118

Factor Graph 0.048761 0.034730 0.116158 0.072352 0.059008

The number of UWB beacons
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)

Fig. 13: Positioning error under different UWB communica-
tion ranges.

2) Communication Range: To investigate the impact of
measurement thresholds on the algorithm, experiments are
conducted with UWB sensors under different measurement
ranges, and the position estimation errors of the entities
are recorded. The experimental results, as shown in Fig.
14, indicate that larger measurement ranges lead to smaller
localization errors. This is because when the UWB sensor’s
measurement range is smaller, the measurement errors tend
to be larger. However, as the measurement range increases,
the UWB sensor can collect more information, which helps
reduce the errors. Nevertheless, it is crucial to strike a balance
as excessively large measurement ranges introduce more in-
terference and noise, resulting in diminishing returns in error
reduction.

Therefore, in practical applications, selecting appropriate
sensor communication ranges based on different scenarios
and performing suitable algorithm optimizations are necessary
steps to improve localization accuracy and robustness.

VII. CONCLUSION

This paper introduces a factor graph-based algorithm for
multi-sensor information fusion, which aims to address chal-
lenges related to positioning errors and map construction
in sensor fusion. The proposed algorithm provides a com-
prehensive framework for multi-sensor information fusion,
encompassing data acquisition, fusion, and application. To
evaluate the algorithm’s robustness, a series of experiments
are conducted, analyzing the impact of parameters such as
the number of beacons and communication range. The experi-
mental results clearly demonstrate the effectiveness of the pro-
posed algorithm under various parameter settings, effectively
addressing the challenges associated with positioning errors
and map construction in sensor information fusion.

Fig. 14: Positioning error when receiving different numbers
of beacons.
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