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a b s t r a c t

Materials are the foundation of social development. The vigorous development of big-data technology
has brought new opportunities for material research and development, gradually entering the data-
driven paradigm. How to safely collect, store and utilize material big-data to realize the design and
prediction of advanced materials has essential research significance and value. Many material big-data
platforms have been constructed to gather multi-source heterogeneous material data. However, these
traditional platforms are hard to realize the safe and efficient circulation and utilization of data. Relying
on the national Materials Genome Engineering (MGE) project, we built a secured big-data sharing
platform and proposed corresponding data collection, storage, utilization, and security solutions. On
the one hand, the blockchain framework working as a ‘middleware’ provides a standard application
program interface for data interaction between participants, and participants do not need to perceive
the underlying system framework; on the other hand, it provides a unified management and security
mechanism for the platform. In terms of collection, the dynamic container model is used to solve the
data normalization problem, thereby improving data quality. In terms of storage, data adaptors store
normalized data in different databases for distributed storage and unified scheduling. The platform
provides a unified service gateway to schedule all services for data utilization. The secured big-data
sharing platform can improve data utilization, promote material data sharing, accelerate material
discovery, and serve the data needs of high-throughput computing and the design of new materials.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Materials are the foundation of social development and a
ymbol and milestone of human civilization and progress. The de-
elopment of materials directly determines the pace of progress
n all aspects of society and is crucial to economic development
nd national security. The early material data infrastructure was
n offline database, which provided basic retrieval functions and
ater evolved into an online database [1]. With the rapid expan-
ion of the big-data industry, the material data infrastructure is
lso undergoing revolutionary changes using big-data. Massive
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material data can be analyzed, mined, and utilized, and then
the corresponding value can be obtained. Nowadays, data-driven
material research and development [2] has been considered the
fourth paradigm after empirical science, theoretical science, and
computational simulation. Data-driven techniques can signifi-
cantly shorten the R&D cycle and reduce costs simultaneously.
Therefore, more and more countries have started the construction
of material data infrastructure [3–5].

The establishment of the Materials Genome Initiative (MGI) [6]
has become a turning point in data-driven materials science,
and the database has gradually evolved into a data center that
provides materials data and fundamental analysis services. Data
mining and artificial intelligence have increasingly promoted re-
searchers to use intelligent algorithms in recent years. Therefore,
most data centers focus on developing algorithmic workflows
that enable researchers to perform data analysis and mining on
databases [7,8]. It marks another inflection point in the history
of data-driven materials science, with the transformation of in-
frastructure into a data intelligence platform that facilitates the
discovery of new materials. Many material big-data platforms
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ave been established in the worldwide, such as AFLOW [3], Crys-
allography Open Database (COD) [9], Gangyan·Xincaidao [10],
tc., aggregating heterogeneous material data. These platforms
ainly adopt a centralized structure, while some acute problems

emain challenging to break through, such as safely collecting,
toring, and utilizing material big-data to realize the design of
ew materials.
Data collection has always been a significant problem in the

latform construction for multi-source heterogeneous material
ig-data. Some existing big-data platforms support only one or
wo types of databases [11,12], whose data set structure is rela-
ively simple and convenient for retrieval and calculation. How-
ver, applications could be limited within some specific fields [6].
n the contrary, some platforms could accept various types of
eterogeneous data, but they may not guarantee efficient and
ccurate retrieval and calculation. Therefore, how to standard-
ze multi-source heterogeneous data is a prominent problem in
ata collection. The Materials Data Curation System [13] uses
ata and metadata models expressed as Extensible Markup Lan-
uage (XML) Schema composed by researchers to generate data
ntry forms dynamically. The Citrination [14] developed a hier-
rchical data structure called physical information files, which
an hold complex material data, ensuring user-searchable and
achine-readable. These infrastructures provide a standardized
ata format to reduce the heterogeneity in the stored data but
nable only technical experts to manipulate these formats due to
he introduction of complex data structures.

Regarding data storage, how to safely and efficiently manage
assive material big data is still a significant problem that is
ifficult to solve. Some studies build up very general material
ata repositories that centrally store as much data as possible
ithout imposing strict restrictions on the structure or format,
uch as [5,15]. However, this faces data security risks of leak-
ge and tampering. At the same time, most material big-data
latforms store data of different structures into corresponding
atabases, such as MySQL, Oracle, DB2, etc. [16,17], which are
ifficult for data service providers to manage and audit. On the
ata consumer’s side, how to effectively utilize the multi-source
eterogeneous material big-data is still an important problem
o be solved. Based on the above issues, Muzammal et al. [18],
nd Yue et al. [19] used blockchain as a data storage scheme for
arties who own a data source, which is a potential solution that
an facilitate centralized management and audit of the underlying
atabase. But security and efficiency remain vital issues to be
olved in present and future research.
The purpose of the material big-data platform construction, on

he one hand, is to realize the exchange of data. On the other
and, the main goal is to realize data’s efficient circulation and
tilization. The Materials Commons [20] provides open access
o a broad range of experimental and simulated materials data
nd allows collaboration through scientific workflows. The Ma-
erials Data Facility [16] provides data infrastructure resources
nd scalable shared data services to facilitate data publication
nd discovery. However, these platforms share raw data with
onsumers, which threatens data privacy. At the same time, the
entralized structure of most platforms cannot meet the multi-
arty collaborative computing that is usually required [21]. A
ommon management and service interface is needed to ensure
he security and privacy of multi-party data while providing
onvenient access and computing services.
In this paper, a secured sharing platform for material big-data

s described relying on the national Materials Genome Engineer-
ng (MGE) project. As the service hinge of MGE’s data applications,
ur secured big-data sharing platform can provide data con-
umers access to massive material data resources collected from

ore than thirty research institutions in China. The platform

60
can effectively solve the primary problems faced in collecting,
storing, and utilizing multi-source heterogeneous data, improve
data utilization, promote service sharing, accelerate material dis-
covery, and serve the requirements for high-throughput calcula-
tions and experiments. The main contributions of this paper are
summarized as follows:

(1) A dynamic container model-based data collection system
(DCS) is constructed to interact with data providers to
standardize multi-source heterogeneous data and reduce
the cognitive burden and learning cost of the users. Our
proposed model has no restriction on the structure of the
uploaded data and can standardize the data set into a
general schema to improve the system’s availability. On
this basis, accurate retrieval and efficient computational
analysis could be achieved.

(2) A blockchain-based secured management framework is
proposed in the platform. The distributed secure storage
framework for big-data based on the blockchain can ef-
fectively solve management and security problems faced
by data storage. On one hand, each participant can flexi-
bly deploy block nodes without changing the underlying
database framework. Data providers and consumers can
join/exit at any time and realize the unified management
of databases with different types. On the other hand, the
distributed ledger can ensure the security of data storage
and realize data tamper-proof, traceable, auditable, etc.

(3) We analyze and discuss the platform’s performance on
uploading and retrieval before and after the adoption of the
blockchain framework. To the best of our knowledge, there
is barely any relevant work on the test of how blockchain
impacts platform performance on the existing secured big
data sharing platform. Other researchers building simi-
lar platforms would benefit significantly from our perfor-
mance analysis in this paper. Some performance-related
data is precious, showing the actual performance benefits
of the proposed decisions.

The rest of this paper is organized as follows. Section 2 in-
troduces the state-of-the-arts and challenges of the material big-
data sharing platform. The framework of our secured big-data
sharing platform (S-BDSP) for material genome engineering are
displayed in Section 3. Section 4 introduces the construction
details and makes some discussions. Section 5 summarizes the
full text and prospects.

2. State-of-the-arts and challenges

With the rapid expansion of the big-data industry, the open
sharing, exchange, and circulation of big-data have gradually be-
come a trend, promoting the release of the data value in all walks
of life. Finance, electricity, transportation, industrial Internet of
Things, and other fields strongly demand building a big-data
sharing platform and already have corresponding solutions based
on their data characteristics [22–24]. In the field of materials,
the development of big-data platforms is not yet mature, and
there is a lack of security mechanisms to ensure the safety of
material data sharing. Due to the multi-modality, isomerization,
and discreteness characteristics of material data [25], some com-
mon problems are still challenging to break through. Different
types of materials have different compositions and performance
concerns. Even the same material often exists in other structural
forms in various databases. Severe fragmentation, isomerization,
and decentralization of material data make it very difficult to
collect, store and utilize. At the same time, the security issue in
material big-data sharing is also a vital issue shared by academia
and industry. For owners of material data, some sensitive data
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Fig. 1. Classification of materials data characteristics.

epresents assets that cannot be easily transferred, resulting in
he formation of ‘‘data islands’’. Due to the shortage of high-
uality material data, research institutions are not conducive to
aterial science research, which ultimately affects the efficient
evelopment of the material industry.
There have been some studies concentrating on the construc-

ion of material big-data platforms. Table 1 summarizes the typ-
cal schemes of state-of-the-art material big-data platforms from
he aspects of data collection, storage, utilization, and security.
n the following, this paper will describe the main challenges
ecured big-data sharing faces from the aspects of the data life
ycle and the security mechanisms covering the whole process.

.1. The characteristics of materials data

The characteristics of materials data are summarized as shown
n Fig. 1. Materials data are usually composed of properties with
elationships in the abstract. Properties are identified by their
ames. Values of properties can be described in several different
ormats called primitive data representations, such as a paragraph
f text, a number, a picture, or even files. Composite data rep-
esentations, such as groups, hierarchies, or tables, describe the
elationship between properties. Combining properties defined
y different data representations ultimately forms a tree-like data
tructure. The primitive data representation contains a string,
umber, image, and file. The composite data representation has
ange, array, choice, generator, container, and table.

Primitive types are essential components without internal
tructures. The type String represents a textual description. The
ype Number represents a numeric value. The type Image and
ile represent information in image formats and file formats
eparately. Considering the popularity of pictures in materials
ata and the requirement for subsequent image processing, we
eparate Image from File intentionally as an independent data
ype for high usability. Combinations of built-in types construct
omposite types. The type Range is composed of a Number and
epresents an interval value of two numbers; the type Array is
omposed of an arbitrary built-in type T and indicates that an
ttribute should take an ordered list of values of T; the type
hoice is composed of String and represents the text options that
n attribute can take; the type Generator, Container, and Table
onsist of a collection of fields which are labeled build-in types.
hey differ in the form of values that a property can take. A

roperty of the Generator can only take one value of some field
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in the collection. A property of a Container can accept one set
of values of all fields in the collection. A property of a Table can
take any number of sets of values of all fields in the collection.
Table 2 shows some examples of the type declaration form of
each build-in type and the corresponding property assignment
forms.

Based on the above analysis and summary, severe fragmen-
tation, isomerization, and decentralization of material data make
the traditional big-data platforms very difficult to store all types
of materials data. When collecting multi-source heterogeneous
material data, the conventional material big data platform faces
challenges such as insufficient data processing capability, diffi-
culty in unifying data structure, and difficulty in data operation
and maintenance, which have created barriers for enterprises to
explore the value of data. At the same time, there is no uniform
data field definition and database construction standard. Data
from different sources will also produce semantic diversity for the
description of the same object, which may lead to problems such
as table conflicts, value conflicts, and attribute conflicts [25].

2.2. The collection stage

Some material big-data platforms have recognized the im-
portance of data quality, such as The Materials Data Facility
(MDF) [16] and NOMAD CoE [5]. They use metadata models
represented by Extensible Markup Language (XML) schemas to
generate data entry forms dynamically. The Citrination plat-
form [14] developed a hierarchical data structure called physical
information files, which can hold complex material data, ensuring
user-searchable and machine-readable. MARVEL NCCR [4] builds
raw input files by converting primary data to AiiDA types through
plug-ins. These platforms provide a standardized data format in
the collection stage, reducing the stored data’s heterogeneity.
However, due to the introduction of complex data types and
structures, only technical experts can manipulate these formats.
This threshold dramatically reduces the operability of the mate-
rial big-data platforms and goes against the original intention of
sharing.

Currently, the industry and academia have little research on
the unified data structure and data quality management of the
material big-data sharing platform in the collection stage and lack
corresponding theoretical research support. For example, most
material big-data platforms, such as AFLOW, NOMAD CoE, Materi-
als Project, etc., do not impose restrictions on data uploading and
cannot standardize data structure management. Data collection
is the first and primary link of a big-data-sharing platform. If
the data quality of the sharing platform cannot be guaranteed
from the source, unreliable providers may provide biased and
inaccurate results to consumers, thereby reducing the availability
of shared data.

2.3. The storage stage

Most material big-data platforms adopt a centralized storage
structure. For example, a specific mechanism for exchanging and
reusing materials data is provided by the Materials Database of
the National Institute of Standards and Technology, which accepts
data in any format [31]. It is relatively simple and direct, and the
‘‘as-is’’ data submitted by the provider is stored. However, due
to its extreme heterogeneity, the data content cannot be directly
retrieved or integrated with analysis tools, and only the ‘‘as-is’’
data can be provided directly to the consumer. Material big-data
platforms, such as AFLOW, COD, and MARVEL NCCR, centrally
store material data in relational databases, file systems, or MySQL.
Although they can support simple retrieval and computational
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Table 1
A summary of existing typical material big-data platforms.
Name Description Collection Storage Utilization Security

AFLOW
[3,26,27]

It bases on high flux first principle,
and it is one of the largest among
many databases. AFLOW has 12
applications including AFLOW π ,
AFLOW-ML and PAOFLOW, which can
screen the structure and properties
of materials.

Pauling file, ICSD,
Navy crystal lattice
database. Collection
method is not
specified.

Centralized
storage in
relational database

Retrieval and
prediction

–

Crystallography
Open Database
(COD) [9,12]

COD collects all known ‘‘small
molecule/small to medium unit cell’’
crystal structures using an open
access distribution model and makes
them freely available on the Internet.
Cod provides basic upload and search
functions.

Check the format of
upload files (only
supports CIF) using
scripts.

Centralized
storage in MySQL
database.

Retrieving and
downloading

Logging, access
control, data
backup

MARVEL NCCR
[4]

Material informatics platform for
data-driven high-throughput
quantum simulation. Supported by
aiida infrastructure.

Convert basic data
types to aiida data
types through
plug-ins to build
original input files.

Centralized storage
in file system
repositories and
relational
databases.

Retrieval and
simulation
modeling.

Using a
directed acyclic
graph to ensure
traceability and
system
robustness

The Materials
Data Facility
(MDF) [16]

Based on DSpace and Globus
systems, MDF operates two cloud
hosting services, data publishing, and
data discovery. Its function promotes
open data sharing, self-service data
publishing, and management and
encourages data reuse.

A template is
provided for
collecting data
through metadata
schema specification.

Distributed
storage, stored in
databases of
different
institutions,
including local and
cloud

Retrieval, data
aggregation,
and automated
analysis.

Identity
authentication,
access control,
disaster
recovery
backup.

Materials
Project [17]

The Materials Project contains a
database with a large amount of
information (nearly 60000 crystal
structures), which can store the
results of high-throughput material
property calculation. The website also
opens a database interface, which
allows you to search and filter
materials by writing code.

Based on ICSD and
other databases.

Distributed
storage, stored in
different crystal
structure
databases,
including ICSD
database, etc.

Data creation,
validation,
retrieval,
download,
analysis, and
design.

Identity
authentication
and data
integrity
verification.

NOMAD CoE
[5]

Provide complete input and output
file storage of all important
computational material science codes,
and build multiple big-data services
at the top.

Unlimited data
uploading, managed
by metadata(DOI)

Centralized
storage in GPFS
file system and
MongoDB
database.

Retrieve and
download(web-
based GUI and
restful API.

Identity
authentication
and access
control

Open Quantum
Materials
Database
(OQMD) [28]

OQMD is a database based on density
functional theory (DFT) to calculate
material thermodynamics and
structure. It provides an API interface
to download the entire database. The
research has built a machine learning
model calculated by DFT.

According to the
given ICSD structure
parameters.

Based on ICSD
database

Retrieval
(web-based
GUI and
conservative
API), data
analysis using
DFT.

–

Open materials
database [29]

COD based calculation database. The
open materials database uses a
high-throughput toolkit to provide a
free open source framework for
calculating and analyzing results and
storing them in a common and/or
specialized database.

Based on COD
database.

Based on COD
database.

Use high-
throughput
tools for
calculation and
analysis.

–

AtSteel [10] Provide standard data and
experimental data of steel, welding
materials, and non-ferrous metals,
with intelligent matching and
material selection algorithms.

Upload data
according to the fixed
template.

Centralized
storage in the
public cloud.

Retrieval
(providing
intelligent data
matching
service).

Identity
Authentication

The Secured
Big-Data
Sharing
Platform for
MGE [30]

aims to integrate data resources in
the field of materials and establish a
material science data system and a
material science data sharing service
platform that meet different national
needs.

Using the dynamic
container model, the
data sets are
automatically merged
into containerized
data sets.

Adopt ‘‘transaction
info stored
on-chain, and
original data
stored off-chain.’’

Retrieval and
download,
digital
identification,
secure
multi-party
computing.

Identity
authentication,
access control,
tamper-proof,
security audit,
and
traceability.
analysis functions, how to centrally and uniformly manage var-
ious types of databases and facilitate the upload and retrieval of
62
multi-source heterogeneous data is a complex problem faced by
material big-data. At the same time, for the data consumer, the
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Table 2
Examples of type declaration forms and property assignment forms.

Classification Type description Examples

Primitive type

String Any length string. x = ‘‘abc’’
Number Integer or decimal (17 digit

precision), with unit.
x = 1

Image For common picture types, such
as JPG, PNG and other formats,
you can check the option ‘‘allow
multiple pictures’’ to allow
uploading multiple pictures.

x = a.png

File Common file types, such as PDF,
word, Excel, json XML and other
formats, you can check the option
‘‘allow multiple files’’ to allow
multiple files to be uploaded.

x = b.pdf

Composite type

Range Numerical range, such as (a, b), or
error representation a ±B, a, B are
numerical data.

x = (1,2)

Choice Several string candidates are
specified in the template. The
options can be grouped. For the
time being, only one level is
allowed. Click Add option to
directly add an item. Clicking Add
group is equivalent to adding a
level-1 title. You can continue to
add several options under this
group.

x = ‘‘a’’

Array One dimensional array. Select the
array type, fill in the field name,
and click set to this type. Array
name: [1,2,3,4,5,6,7,8]

x = [1,2,3,4]

Generator The key value pairs corresponding
to the name and type are
combined. After the combination,
the corresponding form is
generated by selecting a class.

x = x1 = abc

Container It can contain all types and can be
nested arbitrarily. Drag any type
field into the box of the container
type to nest successfully.

x = x1 = ‘‘abc’’,
x2 = 1,x3 = 2

Table For tables, six types of data can
be added: string type, numeric
type, range type, picture type, file
type and candidate type. Array
type cannot be added. For each
column added, select the column
type first and click add column to
successfully add it.

x = x1 = ‘‘a’’,
x2 = 1, x3 = 2,
x1 = ‘‘b’’,
x2 = 3,x3 = 4,
x1 = ‘‘c’’,
x2 = 5, x3 = 6

cognitive burden and learning cost is increased, which limits the
application field of the material big-data sharing platform.

In response to the above issues of centralized platforms, MDF
16], and Materials Project [17] have adopted a distributed stor-
ge solution. However, the data storage structures of various
nstitutions are not uniform, which increases the difficulty for the
ubsequent data sharing of multi-source heterogeneous materi-
ls. In light of this, the blockchain-based storage scheme is a po-
ential solution that can facilitate centralized auditing and man-
gement of the underlying database. However, the blockchain
epresented by Bitcoin was initially designed for digital cur-
ency and had extremely high requirements for security. There-
ore, complex consensus mechanisms such as proof of work
re designed, making the blockchain system slow and challeng-
ng to adapt to large-scale data storage. To solve such prob-
ems, Muzammal et al. [18] combined the blockchain with the
63
database to build a log-based database application platform, real-
izing blockchain distribution, decentralization, and audibility. Yue
et al. [19] used blockchain as a data storage scheme for parties
who own a data source, where data is placed in a specific way
to link to blocks. However, due to blockchain’s decentralized and
open characteristics, storage security cannot be guaranteed. At
the same time, storing all the original data on the blockchain
is not optimal for the massive amount of material data. The
blockchain’s consensus mechanism has taken up many resources.
If all material data is uploaded to the chain, it will affect the
platform’s overall performance. Therefore, ‘‘on-chain transactions
and off-chain storage’’ will be an alternative to ensure data stor-
age security and performance without compromising platform
throughput and computing performance.

2.4. The utilization stage

In using big-data, most material big-data platforms provide
data retrieval, download, analysis, and other functions [10]. Usu-
ally, users can obtain data by visiting online web pages, which
is more convenient and straightforward for the data consumer to
use. Furthermore, an application programming interface (API) can
be provided for materials informatics applications that require
automated access to large amounts of data. For example, the
approach adopted by OQMD is to provide an offline version of
the database as an interface. Offline access provides the most
incredible flexibility and performance. However, it often requires
specialized knowledge, such as using Structured Query Language
(SQL) or Object Relational Mapping (ORM) to interact with the un-
derlying database. In addition, some material databases provide
Digital Object Identifier (DOI) codes to identify data uniquely [32].
However, there is still a gap in the retrieval accuracy and per-
formance of multi-source heterogeneous data to utilize material
data efficiently.

One of the significant challenges of material big-data plat-
forms is the computational generation of new components and
compounds [33]. Traditional big-data sharing platforms, such as
MARVEL NCCR, NOMAD CoE, etc., often aggregate heterogeneous
data into different databases. It can be seen that the conventional
platform only plays the role of data aggregation and provides
point-to-point data transmission services between the platform
and the consumer. However, how to use these data to maximize
their value after data aggregation and how to develop practical
applications based on these sharing platforms are still crucial and
challenging problems. Based on the above issues, optimization-
based methods [34], such as genetic algorithms and simulated
annealing, have been extensively studied, and data-driven meth-
ods [35] are beginning to emerge. ALOW [26,27] predicts crystal
properties based on machine learning algorithms and provides
an open RESTful API to ensure the regular operation of various
workflows. However, it is limited to the needs of a single data
consumer and cannot satisfy multi-party joint computing.

Various research institutions have gradually increased the de-
mand for joint retrieval and multi-party joint calculation, but ex-
isting platforms have not provided relevant functional interfaces.
Blockchain-based multi-party computation has been successfully
used in other areas. For example, Chen et al. [24] proposed
a blockchain-based secure sharing big-data model, combining
blockchain and smart contracts with building a reliable data-
sharing model that does not require a third party, breaking the
current ‘‘data islands’’ and improving data security. Lu et al. [36]
proposed a privacy-preserving data sharing scheme based on
blockchain and federated learning in the industrial IoT scenario.
The blockchain framework can meet the needs of multi-party
joint computing and ensure data security.
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Fig. 2. The framework diagram of our proposed secured material big-data sharing platform.
f
p
d
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.5. Security mechanisms

The material big-data platforms are still relatively weak in
erms of security mechanisms. They only provide fundamental
ecurity mechanisms, such as authentication and access control.
OD [12] provides logging and data backup to ensure auditability
f data operations. MARVEL NCCR [4] utilizes a directed acyclic
raph to ensure data traceability and system robustness. These
echanisms have good protection capabilities for static data, but

hey still cannot effectively solve privacy protection problems in
ata sharing, including data traceability and auditability. During
ata sharing, the participants may try to infer other’s private data
rom the shared one, leading to the leakage of sensitive data. It is
ot easy to protect providers’ rights and interests.
The emergence of blockchain provides a new direction to

olve such problems. The academic community is trying to record
he attribution of various data and the access permissions of
ifferent users on the trusted blockchain network to ensure that
he data is not illegally used [37]. For example, Chen et al. [24]
roposed a blockchain-based secured big-data sharing model,
here blockchain information is synchronized between various
odes, ensuring the auditability and traceability of data sharing.
owever, due to the openness and transparency, some studies
ave introduced additional technologies to the blockchain to
nsure data sharing security. Yang et al. [38] proposed a data
amper-proof mechanism based on blockchain. They introduced
cryptographic algorithm to prevent transaction data from being
ampered with during user storage, ensuring transaction security
nd data reliability. Sex. et al. [21] used blockchain-based se-
ure multi-party computation to achieve privacy-protected data
haring. These methods protect the security and privacy of the
riginal data to a certain extent, but they still cannot avoid
eakage and tampering in calling results.

Additionally, direct data sharing may result in the data owner
osing control of the data, and it is hard to guarantee that there
ill not be any dishonest participant sharing it with other unau-
horized entities. Integrating federated learning into the consen-
us process of the blockchain realizes the sharing of data models
nd avoids loss of control over the shared raw data [39]. However,
he parameters leakage of the federated learning model leads to
he possibility of inferring the original data from the parameters,

hich remains to be solved urgently. To this end, the academic
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community has researched the use of secure multi-party comput-
ing to enhance the security of federated learning. Wei et al. [40]
proposed a new framework based on Differential Privacy (DP),
adding artificial noise to the training parameters before the fed-
erated model aggregation, thereby protecting the security of the
federated learning model parameters. Chai et al. [41] proposed
a knowledge-sharing federated learning algorithm based on a
hierarchical blockchain. The layered blockchain framework can
improve the reliability and security of knowledge sharing. How-
ever, it shows weaknesses when dealing with storage problems,
whose resource consumption is significant.

3. Secured big-data sharing platform for materials genome
engineering

Considering those mentioned above, this paper builds a se-
cured big-data sharing platform for material genome engineering
to solve the common and sensitive problems in the existing plat-
forms. It provides solutions to related issues from the collection,
storage, utilization of material data, and the security mechanism
of the whole process. Our proposed architecture can be capable of
data retrieval, multi-party collaborative calculation, and meet the
application requirements of material data prediction, modeling,
and discovery.

3.1. The overall framework

Based on the underlying data architecture, this paper builds a
secured big-data sharing platform for material genome engineer-
ing with combining the Hyperledger Fabric consortium chain [42].
It provides an open collaborative environment for researchers
to share, retrieve, calculate and analyze data conveniently and
securely. The frame diagram of the secured big-data sharing
platform is shown in Fig. 2, mainly including data provider, data
consumer, data service provider, and the core blockchain frame-
work, providing hub services between the aforementioned three
parts.

(1) Platform Participants: The secured big-data sharing plat-
orm participants for material genome engineering include data
roviders, data consumers, and the data service provider. The
ata providers mainly contribute data sources to the platform,
nd all interactions with the platform are completed through
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he blockchain framework. The original data can be uploaded
o the uniform storage system of the platform or stored locally
t the data provider. The data consumers mainly initiate access
equests or service requests to the shared data in the platform,
nd all interactions with the platform are completed through
he blockchain framework. The blockchain framework records all
hese transactions among the data provider, the data consumer,
nd the data service provider. The data service provider provides
ssential services to the data provider and consumer through the
nternal/external API embedded in the blockchain, so that autho-
ized users can share material data on the platform and work
ooperatively to complete the retrieval and analysis of material
ata.
(2) Blockchain Framework: The blockchain plays the role of

iddleware in the entire platform architecture. As a node on the
lockchain, the data provider and consumer send all transaction
equests to the blockchain through the external API and then
ssue transaction tasks to various systems within the platform
hrough the internal API. All users do not need to understand
he data service provider’s underlying architecture and business
rocesses. The platform’s collection, storage, and service systems
re transparent to users. The endorsement node of the blockchain
xecutes the smart contract. Then, the internal API transfers the
ransaction proposal’s relevant parameters to the platform’s sub-
ystems by calling the smart contract. After that, the endorsement
ode returns the signature endorsement and proposal execution
esults to the data provider or consumer. Finally, it generates
ll transaction results into blocks and synchronizes them to the
hole blockchain via the consensus mechanism. The benefit of
ur proposed blockchain framework is that users do not need
o understand the platform’s underlying architecture, reducing
ognitive load and learning costs. At the same time, the frame-
ork provides a more general solution, increases the scalability
f the blockchain, and can provide a reference for big data sharing
latforms in other industries or fields.
(3) Data Service Provider: The data service provider mainly

refers to the data collecting, storage, and service subsystems,
which provide the data life-cycle services. In the data collecting
subsystem, the data ingestor receives the uploaded data and
uses the container schema designer to customize the schema to
represent the original data set, satisfying the standard data format
adopted in the platform. The data storage subsystem stores the
original data parsed by the collecting subsystem into different
databases and provides the required formatted data to the data
consumer and each framework of the data service subsystem. The
data service subsystem can provide essential data retrieval, multi-
party collaborative computing, third-party integration functions,
and other services for data consumers. The service result, that
is, the reorganized data set, is stored in the platform data stor-
age system, and the summary information of the service result
is stored on the blockchain for subsequent sharing. This bidi-
rectional data flow between the data computation and storage
system constitutes a virtuous circle of data sharing and service
sharing.

3.2. Data collecting subsystem

Material data providers tend to be diverse, and the raw data
are fragmented, heterogeneous, and stored in different formats.
If researchers have to manually transfer raw data sets to the in-
frastructure, the collection process is time-consuming and labor-
intensive, reducing their incentive to share data. To this end, our
proposed platform developed a data collecting subsystem (DCS)
to interact with internal general API of blockchain framework
and collect data from data providers. DCS is primarily designed
to improve system availability, provide dedicated data collecting
65
tools at the appropriate operational granularity, and automate
operations to ease the burden on users. Current implementations
of DCS are based on Abstract containers in DCM are designed to
have internal structures constructed dynamically from different
types of basic layouts. Therefore, DCM provides a way to store,
wrap, and exchange data and enables users to customize schemas
suitable for the structure of the data. DCM supports customization
of attributes and structures. Users can arbitrarily choose attribute
names without any restrictions in principle, but practically names
in schemas that are publicly available on S-BDSP should follow
naming conventions of materials community. The DCM contains
the following components: container schema designer, data in-
gestor, schema evaluator, data parser, and schema mapper. The
data ingestor receives the uploaded data and uses the container
schema designer to customize the schema to represent the orig-
inal data set. After the schema is approved, the data provider’s
raw dataset is normalized and transformed into a containerized
dataset, satisfying the standard data format adopted in the plat-
form. Data parser and schema mapper will parse containerized
datasets into components such as metadata, textual material data,
and binary files, which will be stored in appropriate databases by
database adaptor, respectively.

On the basis of material data type, we propose a Dynamic Con-
tainer Model (DCM) to adapt to the representations of material
data. DCM provides a way to store packaging data and allows
users to customize schemas suitable for data construction. DCM
supports custom properties and structures in principle, and users
can choose property names arbitrarily without any restriction.
However, these names publicly provided by the platform should
follow the material community’s naming convention.

DCM consists of two main parts: the container schema, and
the container instance. The container schema represents an ab-
stract description of the properties and structure of a material
data set. We denote ‘‘:’’ to represent the relationship between
the property and the data type. A type declaration expression is
denoted as ‘‘x : T ’’, which means the property x is of type T . A
container schema S contains a series of expressions of data-type
declaration, denoted as:

S = {xi : T i={1,...,n}
i } = {x1 : T1, . . . , xn : Tn} (1)

where xi indicates the properties and Ti indicates the name of
data-types. A container instance represents an abstract descrip-
tion of the data gathered together. It specifies the value of each
property and constrained by the data set schema. And the assign-
ment expression ‘‘x = v’’ indicates that the value of property
x is v at some point. Then, the container instance C could be
represented by a series of assignment expressions:

C = {xi = v
i={1,...,n}
i } = {x1 = v1, . . . , xn = vn} (2)

Then, a normalized description of a material dataset could be
described as a containerized set (S,D), comprising a schema and
several instances, where D = {C i={1,...,n}

i } = {C1, . . . , Cn}. It can be
seen that DCM uses the template approved by the DCS system to
normalize and convert the original data set into a containerized
one. The standardized dataset will facilitate subsequent retrieval
and computational analysis of material data.

3.3. Data storage subsystem

Material data is an essential resource for developing new
materials, so the integrity and availability of material data are
critical [25]. To this end, material data collection, storage, and
utilization must be transparent, open, and traceable to ensure
data quality and achieve reusability. Therefore, to realize the
secure management during the overall data life cycle, our pro-
posed S-BDSP adopts the Hyperledger Fabric consortium chain as
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Fig. 3. The secured big-data storage framework based on blockchain.
middleware of the entire platform architecture to manage the
eterogeneous material data, realizing the audit of the whole data
rocessing and ensuring data integrity and availability.
The schematic diagram of the storage architecture for our

latform is shown in Fig. 3. Since most material data is sensitive
nd has a large volume, storing all the data on a blockchain
ith limited space is resource-wasting and risky. Therefore, we
dopt the blockchain to manage and retrieve data due to privacy
onsiderations and storage limitations, using ‘‘transaction stored
n-chain, original data stored off-chain’’, which has high security
nd throughput. The endorsement node in the blockchain (the
upervisor is taken as an example of the endorsement node in
he figure) is responsible for the user’s registration, identity, and
uthority verification. The upload records of the data provider
nd the retrieval records of the data consumer will be stored on
he blockchain to ensure the transparency and security of the
ntire process and to achieve data tamper-proof, traceable and
uditable. The original data is locally stored or uploaded to the
latform by its owner, avoiding the computational pressure on
he blockchain. Fig. 3 indicates two main materials data flows:
he data uploading flow from data providers and data retrieval
low from data consumers. The two materials data flows form
closed loop. The following takes data upload and retrieval as
xamples to introduce the overall working mechanism of our
lockchain-based secured big-data storage framework.

.3.1. Data uploading
The blockchain plays the role of middleware in the entire

latform architecture. All users do not need to understand the
ata service provider’s underlying architecture and business pro-
ess. The platform’s collection, storage, and service systems are
ransparent to users. As a node on the blockchain, the data
rovider sends data uploading request to the endorsement node
hrough the external API of blockchain, including the hash of
he uploading data’s meta information. The endorsement node
hecks the data provider’s request, determines whether it has
ermission to upload data, and returns the endorsement result.
f the identity verification passes, the endorsement node sends
he signature endorsement and proposal execution results to
he ordering node, package the request results into a block and
roadcast it to each other node on the blockchain. After that,
he data provider uploads the data directly to the data service
66
Fig. 4. The workflow diagram of data uploading.

provider. The data collecting subsystem converts the original data
into parsed data set, and then uploads it to the data storage
subsystem. After the uploading operation is completed, the data
service provider return signature to the data provider, informing
it that the data uploading is successful. The data provider will
initiate another transaction to notify each node that the data
has been uploaded successfully. The specific process sequence
diagram of data uploading is shown in Fig. 4.

During the whole data uploading process, the data storage
subsystem shown in Fig. 2 is responsible for the management of
storage technologies which are diverse and optimized for storing
different categories of data. The original data set is parsed as
components like metadata, textual materials data and binary files
by the data collecting subsystem, and these components will
be stored separately to appropriate databases by the database
adaptor. A relational database is used to store metadata and
management data that fit into the relational model. A NoSQL
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atabase is used to store heterogeneous text data that have
o fixed schema. All binary data uploaded to the platform are
ersisted to an object storage. In addition, metadata and text data
n the platform are reorganized and indexed in a search engine to
nable complex queries. The current implementation of data stor-
ge subsystem has adopted the well-known database systems as
ts backends. Specifically, PostgreSQL, MongoDB, MongoDB2̆019s
GridFS, and Elasticsearch are used as the corresponding backends
of the relational database, the NoSQL database, the object storage,
and the search engine. We are also improving the data storage
subsystem to support more database systems.

3.3.2. Data retrieval
The real-time distributed retrieval over the heterogeneous

data stored in the platform is the primary requirement of each
consumer. In existing scheme that directly interacts with the
database, the consumer needs to understand the retrieval meth-
ods of various databases for heterogeneous unstructured data. It
is not convenient to realize the joint retrieval, and the efficiency
is also relatively lower. For our blockchain-based platform, most
existing solutions only target on-chain data without considering
their correlation with off-chain data. In order not to modify the
underlying database and improve the retrieval efficiency, our
platform uses the inverted index and Merkle Patricia Tree (MPT)
to build the index structure on the consensus chain and forms
a mapping relationship between keywords, data block addresses
on the chain and database addresses off the chain. In this section,
we will introduce the workflow and method of data retrieval.

In terms of the data retrieval workflow, the data consumer
sends a data retrieval request to the endorsement node by ex-
ternal service API. The endorsement node reviews its identity
and determines whether it has retrieval authority. If the identity
verification passes, the endorsement node generates a search
token and returns it to the consumer. The data consumer sends
the endorsement result to the ordering node, packages the data
retrieval request into a block, and broadcasts it to each node on
the blockchain. After the data service provider saves the block,
it sends the search token to the service gateway, which issues
a retrieval service task to the fundamental service framework.
Then, it finds the summary information of the data set from
the blockchain and retrieves the data from different databases
67
Fig. 6. Create inverted index flowchart.

through the mapping relationship between the blockchain and
the database. As shown in Fig. 2, the retrieval result is stored in
the data storage subsystem as the reorganized data set. Thus, the
retrieval results are translated into formatted data sets through
a translator returning to the data consumer. After the data con-
sumer gets the retrieval result, it will initiate another transaction
informing each node that the data has been successfully retrieved,
and the summary information of the retrieval result is stored on
the blockchain for subsequent sharing. The specific process of
data retrieval is shown in Fig. 5.

As for the data retrieval method, there are mainly three steps:
extracting keywords, constructing index structure, and realizing
retrieval function. Firstly, we adopt the approach of the inverted
index to form a ‘‘keyword v.s. block address’’ index structure.
For example, as shown in Fig. 6, ElasticSearch (ES) [43] could
be used to extract all structured and unstructured data and then
create an index. The finally obtained inverted index is shown in
Fig. 7, which is used to construct an index structure between key-
words and block addresses. Then, another index structure is built
through the MPT tree to improve the efficiency of multi-keyword
retrieval. The MPT tree could be considered as a fusion of Merkle
Tree and Patricia Tree. Based on the anti-tampering hash feature
in the Merkle Tree structure, the authenticity and integrity of the
retrieval results can be verified. Moreover, Patricia Tree saves data
with the same prefix key combination to the same path to free up
storage space. Since MPT contains all the index information on
the blockchain, its size keeps increasing as the index information
accumulates. To reduce the storage cost within the block, MPT
introduces a node pointer structure, as shown in Fig. 8. If part
of the MPT is not updated in the block, there is no need to keep
this part in the newly generated block, but add a node pointer
to the last node in the previous block where the MPT has not
changed. The MPT in the new block only needs to store updated
nodes. Finally, multi-keyword and fuzzy retrieval can be realized
through the MPT index. For accurate multi-keyword retrieval,
the traversal starts from MPTRoot. When multiple keywords are
matched, the value of the path’s expansion node or leaf node is
returned.

3.4. Data service subsystem

In this section, we outline the implementation architecture of
Data Service Subsystem (DSS), which consists of the following
components: service gateway, fundamental service, integrated
service, and multi-party collaborative service. DSS is transparent
to data consumers which just interacts with blockchain through
internal general API. The service gateway of DSS provides a uni-
fied portal for data consumers to access services. It verifies re-
quests from data consumers and distributes them to correspond-

ing service frameworks.
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Fig. 7. An MPT diagram of index structure ‘‘keyword v.s. block address’’.

Fig. 8. A diagram indicates the index update process.

3.4.1. Fundamental service
The fundamental service framework provides services that

romote data discovery and sharing. It mainly includes search
nd export services, digital identification services (DIS), and clas-
ification and statistics services. The search service provides three
inds of search functions to enable users to make complex queries.
he primary search function lets users quickly locate the required
atasets through metadata information like data titles, abstracts,
wners, and keywords. The advanced search function based on
ontainer schemas allows users to impose constraints on data
ttributes of interest and accurately access the required datasets.
he full-text search function has been introduced in 3.3.2. In
erms of DIS, datasets are uniquely identified by the DIS with
DOI that contains information about owners and the location
f the underlying dataset. The Association of a digital identifier
acilitates the discovery and citation of the dataset. We also
rovide a classification and statistics service to help users quickly
nderstand the status of materials data on the platform. We
ivide materials science into different field levels and organize
hem into a category tree. Statistics information of each field
s shown in various visualization methods, including the total
mount of data in the platform and a different amount of data
n each field with their respective trends in data volume. Other
nformation like the number of visits and downloads of each piece
f data, popular fields, and rankings provides users a detailed
iew to estimate hot data or fields [30].

.4.2. Integrated service
The integrated service framework is responsible for integrat-

ng third-party computing and analysis tools for further research.
68
Third-party online services can directly be integrated into the
platform with an access portal in the service gateway and a
dedicated API to transfer data. The offline service will provide an
introduction portal for users to download and use. At present,
the framework under development has integrated several ser-
vices developed by cooperative teams in our project, such as
MatCloud [44] for HTC, OCPMDM [45] for data mining, and the
Interatomic Potentials Database [46] for atomistic simulations.
There have been some studies using data and services provided
by the platform [47,48]. When the framework is fully devel-
oped and the integration process standard has been established,
the platform will be open to all researchers in the material
community and collaborates with them in developing and in-
tegrating useful tools that improve data utilization, promoting
service sharing and material discovery.

3.4.3. Multi-party collaborative service
Given the complementary relationship between blockchain,

federated learning, and secure multi-party computing, this paper
adopts a blockchain-based secure computing solution to ensure
the security of material data computation among multiple parties.
It can ensure that each node has absolute control over its data,
and all data calls can be audited in the whole process through
the blockchain framework. The multi-party collaborative service
framework based on blockchain is shown in Fig. 9. The data
consumer initiates a computing request to the platform via the
external service API. The request task that carries the model
parameters initialized by federated learning is sent to the en-
dorsement node. Calculation scripts for federated learning models
are deployed to smart contracts on the blockchain. The data
consumer and each participant, namely the consensus node of
the blockchain, are responsible for promoting the consensus in
the consortium chain. Then, consensus nodes jointly train a global
model through federated learning. In the training process, secret
sharing is used to exchange model parameters between nodes to
prevent the leakage of model parameters and ensure the security
of the entire joint training process. Homomorphic encryption
technology is used to calculate and update the encrypted model
parameters. Once the model is trained, data consumer inputs
the parameters to the global model and obtains corresponding
results. Finally, the data consumer uploads the calculation results
to the consortium chain so that other consumers with the exact
computing requirements can obtain the relevant result records
quickly, saving the platform’s computing cost.

Based on our framework, this section proposes relevant so-
lutions for the collection, storage, and utilization of material
data and the security mechanism of the entire process. In terms
of collection, problems such as the normalization of the data
structure are solved by the dynamic container model. In terms
of storage, by building a blockchain architecture based on the
underlying databases and adopting the ‘‘transaction stored on-
chain, original data stored off-chain’’, centralized management
and security audits of different types of databases are realized.
At the same time, data leakage prevention, tamper resistance,
and traceability can be achieved. In terms of utilization, full-
text retrieval of heterogeneous data is realized using inverted
index and MPT methods. By using federated learning and secure
multi-party computing, collaborative prediction, modeling, and
discovery of material properties could be realized.

4. Analysis and discussion

Up to now, more than 13 million pieces of valid material data
have been collected through the portal website of the secured
big-data sharing platform for material genome engineering (S-

BDSP for MGE) [30,49]. The top five areas with the most data



R. Wang, C. Xu, R. Dong et al. Future Generation Computer Systems 142 (2023) 59–74

a
m
S
l
a
c
b
i
a

4

r
p
d
m
i
m
e

Fig. 9. A framework diagram of secure multi-party computation scheme based on blockchain.
Fig. 10. Graphical user interface of the container schema designer.
re special alloys, materials thermodynamics/kinetics, catalytic
aterials, first-principles calculations, and biomedical materials.
-BDSP generally provides the solutions for material data col-
ection, storage, utilization, and data-sharing requirements such
s data retrieval and calculation among the participants. Data
onsumers in various fields can also develop their research tools
ased on the service framework provided by the S-BDSP accord-
ng to their own sharing needs, jointly predict material properties
nd develop new materials with other related parties.

.1. The system function analysis

In terms of data collection modules, since DCM plays a central
ole in the S-BDSP for MGE, its availability largely determines the
erformance of the whole platform. To this end, the platform has
eveloped a container schema designer to help users intuitively
odify existing schemas or create entirely new ones with built-

n types, as shown in Fig. 10. This paper takes the data of shape
emory alloy as an example. It shows how to describe the prop-
rties and structure of the data through the container schema
69
designer’s graphical user interface (GUI), which offers excellent
flexibility in creating container schemas. Various schemas can
be designed to describe materials in the same field, which will
improve the quality of data normalization and make it easier
for users to discover and use the data. In addition, DCS provides
dedicated data collection tools for each category with appropriate
operational granularity, allowing the collection of data sets from
providers and automatic normalization into containerized data
sets to reduce user workload. Besides, this platform develops a
schema evaluator to assess the quality of schemas. With a deep
understanding of materials and schemas, assessment experts can
correct inappropriate terms and structures in schemas. Approved
patterns will be published on the platform.

For data storage, taking data uploading as an example, the S-
BDSP can accept data uploaded through web pages or files. After
entering the data uploading page, select an existing template in
the system, or you can recreate the template and then upload
data. The data submission format is either web pages or sub-
mitted files, which could be further divided into EXCEL, JSON, or
XML files. When submitting via web pages, click the ‘‘Submit via
the web page’’, fill in the metadata and related information, and
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Fig. 11. The retrieval data representation interface dynamically generated from a container schema. The data representation interface is generated dynamically
according to the schema of the example data of the S34MnV liquid core forging process values.
click ‘‘Submit’’. Then, the transaction record of the uploaded data
will be stored on the blockchain, including the hash value of the
submitted metadata. The original data directly interacts with the
underlying database for storage.

The retrieval service provides three modes, i.e., the primary
ode, container-based advanced mode, and the full-text mode,
nabling users to perform complex queries regarding data re-
rieval function modules. In the primary retrieval mode, users are
llowed to quickly locate the desired dataset through metadata
nformation such as data title, abstract, owner, and keywords.
he advanced retrieval mode based on containers will enable
sers to impose constraints on the data properties of interest and
ccess the required datasets exactly. The full-text retrieval mode
llows users to obtain datasets containing multiple keywords
70
in metadata or properties. Each piece of data in the retrieval
results will be represented by a visual interface generated by
the corresponding schema. As shown in Fig. 11, the details of
the S34MnV liquid core forging process values are represented
in the generated interface, as the same structure described in
the schema. In addition, data sets can be exported to JSON,
XML, and excel formats for further study. The result can also
be exported with filters, allowing only relevant attributes to be
selected. In addition, the platform provides API-based data export
for integration services.

In terms of data services, computing and analysis tools can
be directly integrated into the service module of S-BDSP through
a third-party online service interface and transmitted data with
an access portal and a dedicated API in the service gateway. The
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Table 3
Experimental equipment configuration.
Configuration Parameters

vCPU 11th Gen Intel(R) Core(TM)
i5-11300H @ 3.10 GHz

Operating System Ubuntu 20.10
Number of Virtual
Machines 5

Memory 16G DDR3 RAM
Language Python 3.9, Go 1.18

Testing tool Apache Jmeter and
Hyperledger Caliper

framework has integrated several services developed by collabo-
rating teams, such as MatCloud for HTC, OCPMDM for data min-
ing, and an interatomic potential database for atomic simulation.
At the same time, based on modules such as federated learning
and secure multi-party computing, services, such as multi-party
joint prediction of material properties and generation of new
materials, are provided. When the framework is fully developed
and the integration standard is established, the S-BDSP will open
up the related services of multi-party collaborative computing to
all researchers in the materials community and cooperate with
them to develop and integrate valuable tools to improve data uti-
lization. On the premise of ensuring the security of material data,
it promotes the process of material data sharing and material
discovery.

4.2. The system performance analysis

In this subsection, our secured big-data sharing platform’s per-
ormance for materials genome engineering is analyzed based on
verage latency and throughput. On the one hand, it mainly ver-
fies the platform’s performance before and after the adoption of
ur proposed blockchain framework; on the other hand, we also
onfirm that our proposed MPT retrieval method can improve
fficiency while ensuring security measures. The experimental
esults prove that applying the blockchain framework makes the
latform’s performance within an acceptable range, which can
ully meet the actual use needs of the system.

.2.1. Experiment setup
The experimental environment setting needs to be considered

rom three aspects: blockchain network, equipment configura-
ion, and testing tools. Regarding the blockchain network, each
ode is launched as a Docker container and then connected to the
abric network using the Docker Swarm. The blockchain network
onfiguration file was also configured, which defines the net-
ork parameters, such as the organizations, peers, nodes, channel
ame, etc. Specific equipment configuration items and models are
hown in Table 3. Regarding testing tools, we used Apache Jmeter
o test the platform’s performance without blockchain and set up
he Hyperledger Caliper-a blockchain benchmark tool to test the
latform’s performance with blockchain. The configuration file of
hese tools was configured to vary transaction rates, transaction
umbers, and workload containing uploading and retrieval. Two
ypical application scenarios as experimental cases are set up
o evaluate the critical performance indicators of the proposed
ystem, namely

(1) Case 1: The impact of varying transaction rates on the plat-
form’s uploading performance is evaluated with or without
the proposed blockchain framework. Hence, several trans-
action rates were considered, namely 100, 150, 200, 250,
and 300 tps (i.e., transactions per second). The primary
purpose of this case is to test the impact of blockchain
on system performance containing the average throughput
and latency.
71
Fig. 12. The impact of transaction rate (tps) on throughput and latency during
the uploading phase.

(2) Case 2: The impact of varying transaction rates on the
platform’s retrieval performance containing the average
throughput and latency is evaluated with or without the
proposed MPT retrieval method. Hence, several transaction
rates were considered, namely 100, 150, 200, 250, and 300
tps (i.e., transactions per second). The case mainly aims at
testing whether the MPT retrieval method can improve the
platform’s performance.

.2.2. Results and analysis
From the experimental results, it has been found that

lockchain impacts the platform’s performance to a certain extent
ut within a reasonable range. Still, according to the practical
pplication of the platform, the transaction rate generally does
ot exceed 200 tps. When the transaction rate in the experiment
s 200 tps, the average throughput during the uploading and
etrieval phase has not reached its maximum, and the average
atency of uploading and retrieval is about 0.67 s and 0.63 s,
espectively. This implies that this specific test environment
ould handle up to 200 tps without significant network delay.
he platform performance is within an acceptable range with
ntroducing the blockchain framework. Compared with the sys-
em performance without our proposed framework deployed,
he average latency of uploading has risen by only 0.083 s. The
ncrease in millisecond delay is almost invisible to platform users.
t the same time, after adding the MTP structure, the average
etrieval time drops by more than 50% compared to that of the
imple Fabric. Overall, using our proposed blockchain framework,
he security performance of the system can be improved without
ffecting the user experience. Detailed experimental results are
iscussed below.
As shown in Fig. 12, during the uploading phase, compared

ith the platform without blockchain, the throughput and la-
ency are not apparently influenced when the transaction rate
s below 250 tps. The impact of the blockchain framework on
he platform performance starts to change significantly when
he platform is above 250 tps. That is, the blockchain network
ould handle up to 250 tps without significant network latency.
hen the transaction rate goes above 250 tps, the blockchain’s

hroughput decreases as the transaction rate increases and the
atency significantly increases. However, in the actual use of the
latform, the transaction rate generally does not exceed 200 tps,
o after the deployment of the blockchain, the impact of the
ransaction rate on the platform is acceptable. As the number
f concurrent transactions increases, we can easily increase the
hroughput and latency performance by expanding the hardware
esources and network bandwidth without having to adjust the
ystem framework and services.



R. Wang, C. Xu, R. Dong et al. Future Generation Computer Systems 142 (2023) 59–74

5

e
t
v
a
n
a
p
f
t
a
b

n
i
v
V

D

c
t

D

R

Fig. 13. The impact of MPT retrieval method on throughput and latency during
the retrieval phase.

During the retrieval phase, the blockchain network could han-
dle 300 tps without apparent delay, as shown in Fig. 13. This
result illustrates that our actual operating environment did not
reach its maximum limit and could support higher transaction
rates. At the same time, compared with that retrieval method
without MPT (denoted as non-MPT), the average retrieval time
of our proposed method drops significantly. From the results, we
can verify that the retrieval method based on MPT improves the
retrieval performance based on blockchain.

Overall, the following conclusions could be drawn:

(1) During the uploading phase, throughput is relatively flat
as the transaction rate increases if the platform has al-
ready reached at its maximum limit. The higher transaction
rate can be supported if the hardware configuration has a
higher spec.

(2) During the uploading phase, the average latency increases
with the increase in transaction rate if the platform has
already reached its maximum limit. However, in the actual
use of the platform, the transaction rate generally does not
exceed 200tps, so after the deployment of the blockchain,
the impact of the transaction rate on the platform is ac-
ceptable.

(3) During the retrieval phase, when the throughput does not
reach its maximum limit, compared with simple Fabric,
our proposed MPT method’s latency growth rate with the
increase in transaction rate is not apparent. Although block
generation increases the latency, the retrieval method based
on MPT improves the retrieval performance. At the same
time, after adding the MTP structure, the average retrieval
time drops significantly compared to the simple Fabric.
From the results, we can verify that the retrieval method
based on MPT improves the retrieval performance based on
blockchain.

. Conclusion and prospect

The secured big-data sharing platform for materials genome
ngineering (MGE) is a national science and technology infras-
ructure platform. Relying on this, it publishes and provides ser-
ices through the portal website to support material selection
nd accelerate material design and optimization, which is sig-
ificant to national economic construction. In this paper, we
nalyzed the state-of-the-art and challenges of material big-data
latforms and constructed a secured big-data sharing platform
ramework for materials genome engineering. On the one hand,
he blockchain framework working as a ‘middleware’ provides
standard application program interface for data interaction

etween participants, and participants do not need to perceive
72
the underlying system framework; on the other hand, it provides
unified management and security mechanism for the platform.
Its systematic and scientific nature promotes materials genome
engineering. Material data plays an increasingly important role in
the era of big data, enabling the in-depth development of material
science innovation. The cross-integration with information and
other fields poses more significant challenges to material data
researchers. The analysis and mining-related services of S-BDSP
will promote the process of the fourth paradigm, data-driven
material research, and development.

The S-BDSP will be further improved and optimized based on
the existing framework and related solutions in the follow-up
research. For example, the multi-party federal retrieval function
would be realized based on heterogeneous data retrieval. At the
same time, we will continue to strengthen material data’s re-
search and development capabilities in secure sharing to achieve
more in-depth material data applications in MGE and other as-
pects.
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