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a b s t r a c t

Abrupt-motion tracking is challenging due to the target’s unpredictable action. Although particle
filter (PF) is suitable for target tracking of nonlinear non-Gaussian systems, it suffers from the
problems of particle impoverishment and sample-size dependency. This paper proposed a quantum-
inspired particle filter for abrupt-motion tracking. We apply the concept of quantum superposition
to transform classical particles into quantum particles. Quantum representation and corresponding
quantum operations are addressed to utilize quantum particles. The superposition property of quantum
particles avoids the concerns of particle impoverishment and sample-size dependency. The proposed
diversity-preserving quantum-enhanced particle filter (DQPF) obtains better accuracy and stability with
fewer particles. A smaller sample size also helps to reduce computational complexity. Moreover, it
has significant advantages for abrupt-motion tracking. The quantum particles are propagated at the
prediction stage. They will exist at possible places when abrupt motion occurs, which reduces the
tracking delay and enhances the tracking accuracy. This paper conducted experiments compared to
state-of-the-art particle filter algorithms. The numerical results demonstrate that the DQPF is not
susceptible to motion mode and particle number. Meanwhile, DQPF maintains excellent accuracy and
stability.

© 2023 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Target tracking is a crucial component in many essential
ervices for the Internet-of-Things (IoT), such as surveillance,
nomalous activity detection, and intelligent traffic management
ystems [1,2]. Especially abrupt-motion tracking is key and chal-
enging due to its unpredictable nature, leading to the failure
f most tracking methods. The Global Positioning System (GPS)
ttracts plentiful applications for outdoor navigation with its
onvenient and flexible characteristics [3]. However, it cannot
rovide accurate enough position estimation occasionally because
f the relatively weak GPS signals impeded by dense struc-
ure materials. Classical Radio Frequency Identification (RFID) [4]
ased location method, such as time of arrival (ToA) [5], time
ifference of arrival (TDoA) [6] and received signal strength
RSS) [7], is an alternative in areas where GPS signals are unavail-
ble. However, it is unsuitable for tracking in unknown areas due
o its requirements for external infrastructure deployment.
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Vision-based tracking methods, which extract features directly
from the images to be augmented, usually obtain higher accuracy.
However, according to Huber’s theory of robust statistics, fea-
ture extraction’s efficiency through the sequence severely limits
their robustness [8], let alone the required external infrastruc-
ture deployment. On the other hand, vision-based methods are
sensitive to partial occlusion, camera motion, and so on [9].
Researchers have come up with many methods to address this
issue, including detection-based [10] and stochastic sampling-
based tracking methods [11]. However, a pre-training procedure
is required in detection-based tracking algorithms. Moreover, the
stochastic sampling-based tracking algorithms track by stochastic
sampling rather than a specific trajectory in the search space.
These algorithms will introduce much time consumption.

On account of the relatively high accuracy and convenience,
the inertial navigation system (INS) has been integrated into var-
ious devices [12]. However, as the critical component of INS, the
inertial measurement unit (IMU) lacks long-term stability due to
sensor noise, accumulative errors, and drifting [13]. The filtering
method, especially the particle filter, which has superior adapta-
tion to a nonlinear and non-Gaussian abrupt-motion tracker [14],
provides a reliable solution for enhancing the performance of
IMU. The process of particle filter is shown in Fig. 1, which is

a continuous iterative process. However, a general particle filter
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Fig. 1. The process of traditional particle filter. Step 1: Begin with weighted
samples from last time; Step 2: Draw samples according to the weights; Step
3: Predict by applying motion model; Step 4: Obtain new measurements; Step
5: Assign weights to particles, proportionally to their likelihood.

has two drawbacks [14]: particle impoverishment and sample-
size dependency. Some academics attempted to come up with
solutions by improving resamplings. Tiancheng Li et al. proposed
a stratified resampling method [15], and Juha Ala-Luhtala et al.
proposed a systematic resampling method [16]. Both two mod-
ified resampling methods are built on multi-layered perception.
However, the samples decrease after iterations, with only a few
occupying most of the weights. As a result, final estimation find-
ings are not always as excellent as intended. Implementing a
more competent approach to improve the particle filters’ per-
formance is alluring. Quantum computing-inspired optimization
(QCiO) has been applied to numerous works for performance
enhancement [17].

QCiO is based on the quantum concept, such as superposition
and entanglement. As a revolutionary ideology, QCiO has been
applied to several applications to obtain optimal results [17]. For
example, quantum-inspired particle swarm optimization (QPSO)
has presented superiority in obtaining the optimal for many elec-
tromagnetic problems [18]. To optimize the expected sum uplink
transmit rate without any prior knowledge of ground users, Li
et al. [19] proposed a quantum-inspired reinforcement learning
(QiRL) approach to solve the trajectory planning problem. In
particular, quantum improvement in particle filters also attracted
the attention of many researchers. A. Khalili et al. [20] proposed
a quantum particle filter for pedestrian tracking. It simulates the
uncertainty of the position of electrons around the nucleus by
propagating particles in areas where the person is more likely to
be. However, the method in [20] lacks quantum theory. It simply
modeled the behavior of electrons and improved the prediction
process without using quantum theory and mechanisms.

Quantummechanics deliver comprehensive quadratic speedup
for computation [21]. Inspired by quantum mechanics, we pro-
posed a diversity-preserving quantum-inspired particle filter
(DQPF). In DQPF, quantum mechanics are applied to improve the
property of particles and the resampling process. As we all know,
the classical particle can only be in one state at one moment.
However, DQPF transforms the classical particles into quantum
ones by quantizing the motion patterns, which plays a crucial
role in overcoming particle impoverishment and sample-size
dependency. Then, Grover’s algorithm improves the resampling
process. Benefiting from quantum mechanics, the proposed DQPF
has better precision and stability with fewer particles than the
general one. The contributions of this paper are as follows:

• We apply the quantum superposition to transform classical
particles into quantum ones. Quantum representation and
corresponding quantum operations are addressed.
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• The superposition property of quantum particles avoids the
concerns of particle impoverishment and sample-size de-
pendency. The proposed DQPF obtains better accuracy and
stability with fewer particles. A smaller sample size also
helps to reduce computational complexity.

• The proposed method has significant advantages for abrupt-
motion tracking. The quantum particles are propagated at
the prediction stage. They will exist at possible places when
abrupt motion occurs, which reduces the tracking delay and
enhances the tracking accuracy.

The organization of this paper is shown as follows. Firstly,
Section 2 puts forward the motion model and the traditional
particle filter issues. We also introduce the concept of quan-
tum computation for the understanding of this work. Section 3
first describes the framework of DQPF. Then the representation
of quantum particles and Grover’s resampling method are pre-
sented. In Section 4, the numerical experiments’ findings verify
the superiority of the proposed DQPF. Section 5 summarizes the
paper.

2. Preliminaries

2.1. Motion model

Consider a target node outfitted with an IMU, represented by
M. The state transition process and the measurement process
are executed in discrete time. The time interval is denoted as
tk, where k = 0, 1, . . . , K . The state space at time tk is de-
noted as Sk (see Table 1), which includes vector of coordinate
Pk =[xk, yk]T and vector of velocity V k=

[
vkx , v

k
y

]T . That is to say,
Sk =

[
PT

k ,V
T
k

]T
. For the abrupt-motion tracking issue, this paper

first offered the dynamic model. The dynamic walking process is
assumed to conform to the motion law of node M. Thus, we took
advantage of the first-order hidden Markov model and built the
dynamic model as follows:

Sk = f (Sk−1,Ak−1, ζ) (1)

where the Ak−1 represents the vector of acceleration at time tk−1
and the ζ represents the Gaussian noise generated during state
transition process. In this paper, Ak = [akx, a

k
y]

T and the value of
akx or aky is introduced randomly from {0,−g, g}, simulated as a
random Markov jump [22]. The ζ =

[
ζx, ζy

]T satisfies ζx, ζy ∼

N (0,Σ). The target’s measurement is given as a state-relate met-
ric in this work. IMU collects information on the target’s step dis-
tance and heading direction according to the acceleration and an-
gular velocity. The measurement of the step distance at tk is rep-
resented as d̂k = dk + ιk, where dk=

√
(xk+1 − xk)2 + (yk+1 − yk)2

and the noise ιk satisfies ιk ∼ N (0,Ψk). The measurement of step

distance could be reflected as the vector d̂ =

[
d̂0, d̂1, . . . , ˆdK−1

]T
.

Meanwhile, the measurement of the heading direction at tk is
represented as θ̂k = θk + ϑk, where θk = arctan yk+1−yk

xk+1−xk
and the

noise ϑk satisfies ϑk ∼ N (0,Ωk). The measurement of heading

direction could reflected as the vector θ̂ =

[
θ̂0, θ̂1, . . . , θ̂K−1

]T
.

2.2. Quantum computation

Quantum computers are programmable quantum mechanical
systems that do computations using quantum physics features.
Quantum computing delivers exponential speedups for various
computer processes. These speedups are made possible by three
quantum physics phenomena: superposition, interference, and
entanglement. In quantum computation, qubit is the primary
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Table 1
Symbol description.
Symbol Description Symbol Description

S – State space tk – Time interval
P – Vector of coordinate ι – Gaussian noise of step distance
V – Vector of velocity ϑ – Gaussian noise of heading direction
A – Vector of acceleration Ψ – Variance of ι
ζ – Gaussian noise of process Ω – Variance of ϑ
Σ – Variance of ζ |ψ⟩ – Quantum state
d – Actual step distance I – Identity matrix
θ – Actual heading direction Nv – Number of velocity space elements
d̂ – Measurement of step distance O1 – Quantum oracle
θ̂ – Measurement of heading direction Np – Number of particles
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Fig. 2. The framework of Grover’s algorithm.

Fig. 3. Framework of DQPF.

bject of information carrier, as bit in classical computation. A
ubit can be denoted as |ψ⟩ = α|0⟩ + β|1⟩, where α and
are called amplitudes and satisfy the normalized equation:

α|
2

+ |β|
2

= 1 [23]. Once a qubit is measured, it will collapse
nto certain eigenstates. In other words, under the probability of
α|

2 or |β|
2

|ψ⟩ collapses into |0⟩ or |1⟩ after being measured.
urther, the quantum mechanics introduces an essential matrix
amed unitary transformation matrix U . The matrix U is utilized
o transform the quantum state |ψ⟩ to different quantum state
ψ ′

⟩ as |ψ ′
⟩ = U |ψ⟩. U is required satisfying U†U = UU†

≡ I ,
here I represents identity matrix. There are a lot of signifi-
ant quantum gates designed for a particular operation. More
ntroduction about quantum gates can be found in [23].

Grover’s search method is the most well-known quantum
ethod [24], proposed by Lov Grover in 1996. It speeds up the
olution to unstructured database searches, requiring fewer steps
han any traditional algorithm. Grover represents particular items
n quantum forms and applies several unitary operators to manip-
late their state iteratively. The framework of Grover’s algorithm
s shown as Fig. 2. As the primary operations in Grover’s search,
he Grover iteration will be utilized in the resampling process of
he proposed DQPF method.

. Diversity-preserving quantum-inspired particle filter

In this section, the proposed DQPF is detailed. First, the frame-
ork of DQPF is introduced. Next, the representations of quantum
256
articles and the designed quantum operations for improving the
uantum particle resampling mechanism are shown. At last, the
QPF’s implementation is presented.

.1. Framework of DQPF

Inspired by quantum mechanics, the property of particles and
he resampling process are improved in DQPF. The framework
f DQPF is described in Fig. 3. First, the newly classical particle
warm is generated and the particle’s velocity is represented
sing qubits. Then the quantum particle swarm with superposi-
ion of velocity is obtained. DQPF propagates quantum particles
ccording to their velocity. Thus the weight of each quantum
article is calculated by measuring the state of the target. Due
o the superposition of velocity, the particle’s weight is also in a
uperposition. Next, the designed quantum oracle is applied, and
rover’s iteration is executed to mark the high-weight particles.
ventually, the superposition state of a quantum particle with up-
ated amplitude is obtained. The superposition state is measured
o collapse, and a new particle swarm is generated for the next
racking iteration.

.2. Quantum representation of particles

A bit can have a value of 0 or 1, but a qubit can also be a su-
erposition of 0 and 1. Here, in a quantum-inspired particle filter,
he classical particles are transformed into quantum particles by
tilizing the attribute of the qubit. Although the changes in veloc-
ty are continuous, the particle’s velocity is quantized. Agreeing to
he superposition rule in quantum computation [17], the eigen-
elocity at time tk can be represented in a linear superposition
orm as follows:

Vk⟩ =

∑
n

[
αn|v

k
x ⟩, βn|v

k
y⟩

]
(2)

where αn and βn satisfy
∑

n |αn|
2

= 1 and
∑

n |βn|
2

= 1,
espectively. In this paper, let Nv denote the number of velocity
pace elements. It is assumed that Nv = 2m and m indicate the
numbers of qubits for velocity. Then Eq. (2) can be rewritten as:

|V(Nv)
k ⟩ → |V (m)

k ⟩ =

m  
11...1∑
v=00...0

Cv|v⟩ (3)

where Cv is probability amplitudes, and the condition is satisfied:
m 

11...1∑
v=00...0

|Cv|2 = 1.

Since classical particles are transformed into quantum parti-
cles, one quantum particle could be propagated simultaneously
with different velocities to cope with any abrupt change. One
quantum particle is equivalent to a swarm of classical particles.
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he following subsection will detail the quantum operations of
articles, which describes the resampling process with quantum
articles.

.3. Quantum operations of particles

Due to the inapplicability of the traditional unstructured
earch algorithm for quantum particle space, this paper takes
dvantage of Grover’s search algorithm. The particle resampling
rocess is executed by measuring particles. Since the quantum
article is in a superposition of eigenvelocity, |v⟩ will collapse
ith the probability |Cv|2 once measurement occurs. Grover’s

teration has the ability to amplify the amplitude of a quantum
article’s high-weight state. In DQPF, let f (V) = |V(Nv)

k ⟩ =

|V (m)
k ⟩ be the velocity of particle. There are three steps to realize

the Grover operator as follows: (1) Initial the superposition of
2m possible eigenvelocity |V (m)

k ⟩ by the Hadamard matrix as
ollows:

V (m)
k ⟩ = H⊗m

|

m  
00 . . . 0⟩ =

1
√
2m

|00 . . . 0⟩ + · · · + |11 . . . 1⟩

=
1

√
2m

2m−1∑
x=0

|v⟩

(4)

According to the quantum representation of particles,
1

√
2m

s corresponding to the probability amplitude Cv . The Hadamard
transform can be represented as follows:

H⊗m
=

1
√
2m

[
1 1
1 −1

]⊗m

(5)

Furthermore, the initial velocity above can be rewritten as:

f (V) = |V (m)
k,k=0⟩ =

1
√
2m

2m−1∑
x=0

|v⟩ =
1

√
2m

|v⟩ +
1

√
2m

∑
x̸=v

|x⟩

=
1

√
2m

|v⟩ +

√
2m − 1
√
2m

·
1

√
2m − 1

∑
x̸=v

|x⟩ =
1

√
2m

|v⟩

+

√
2m − 1
√
2m

|v⊥
⟩

(6)

Here, supposed 1
√
2n

≡ sin θ , hence, Eq. (6) can be rewritten
as:

f (V) = |v
(m)
0 ⟩ = sin θ |v⟩ + cos θ |v⊥

⟩ (7)

(2) Apply the oracle O1. Denote unitary operator O1 as a
quantum oracle. In the proposed DQPF, the oracle is designed as
follows:

|ψ1⟩ : |v
(m)
k ⟩

O1
−→

1
√
2m

2m−1∑
x=0

(−1)f (v)|v⟩|−⟩ (8)

Here f (v) is the condition for whether |v
(m)
k ⟩ flips or not. If

(v) = 1, |v
(m)
k ⟩ flips. Moreover, the notation |−⟩ represents

−⟩ =
|0⟩−|1⟩
√
2m

. (3) Achieve the Grover iteration as follows:

ψ2⟩ : |ψ1⟩
G

→

[(
2|v(m)

k ⟩⟨v
(m)
k | − I

)
|ψ1⟩

]F
≈ |V⟩

|0⟩ − |1⟩
√
2m

(9)

where G is unitary transformation denoted as:

G = O1

(
2|v(m)

k ⟩⟨v
(m)
k | − I

)
(10)

nd

|v
(m)

⟩⟨v
(m)

| − I = H⊗m(2|0⟩⟨0| − I)H⊗m (11)
k k
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The conditional phase shift is performed by operation (2
|0⟩⟨0|−I). In addition, F represents the Grover iteration time. The
mplitude of |v

(m)
k ⟩ will be updated when the quantum particle

with velocity |v⟩ is selected. However, we need guarantee f (v) =

to realize the updating process in Grover’s iteration.
At the end of Grover’s iteration, the quantum particle is mea-

ured, and the superposition of the quantum particle collapses
nto a definite state by probability amplitude. Then the particle
warm is obtained, which is applied to the next tracking iteration.
ince it is transformed into a quantum particle swarm, particle
mpoverishment will be solved.

.4. Implementation and complexity

For better illustration, an integrated pseudo-code is shown as
n Algorithm 1. Then, we briefly analyze its complexity. Grover’s
earch has an ideal number of iterations Noptimal to produce
he maximum probability of measuring a valid output. If the
roblem has p possible terms and q of them are solutions to the
roblem, then Noptimal ≈

π
4

√
p
q (refer to [25]). In DQPF, the most

critical parameters that affect the computation time are number
of velocity space elements Nv and number of particles Np. There
are Np solutions from Np × Nv items. Then, its complexity is at
most O(

√
Np×Nv

Np
) = O(

√
Nv).

4. Numerical simulation and analysis

To test the proposed DQPF, several groups of experiments on
the target tracking problem are compared to the other four im-
proved particle filters. Two state-of-the-art classical particle fil-
ters: standard Systematic Resampling particle filter (SR) [26] and
Compressed Monte Carlo Resampling particle filter (CMCR) [27].
An improved classical particle filter aiming at abrupt-motion
tracking problem is also considered, named the Intensively Adap-
tive Markov-chain Monte Carlo method (IA-MCMC) [28]. In order
to explain the advantages of DQPF more comprehensively, we
compare it with the existing quantum particle filter [20].

4.1. Experimental setup

This paper conducted the experiments on the platform Azure
Quantum, a Microsoft cloud service that includes a different set
of quantum solutions. All the experiments are deployed on a
personal computer with four core i5 CPU and 16 GB memory,
whose operating system is Windows 10 system.

To demonstrate the effectiveness of the DQPF method against
the abrupt motion, this paper conducted experiments based on
the motion modes of the target, which can be divided as follows:

• Random motion: The target might abruptly change its step
distance and the heading direction at each step. This means
that abrupt motion could occur at each step;

• Rectangle motion: The target changes the heading direction
90◦ counterclockwise every 20 steps, while keeping the step
distance unchanged;

• Traversal motion: The target keeps the step distance un-
changed, moves straight for 10 steps, and then turns back.
The abrupt motion occurs when the target turns back;

• Rectilinear motion: The target keeps the step distance and
the heading direction unchanged. There is no abrupt motion
that occurs in rectilinear mode;

• Circular motion: The target moves in a uniform circle. There
is no abrupt motion that occurs in circular mode.



J. Wan, C. Xu, W. Chen et al. ISA Transactions 138 (2023) 254–261

O

t
S
s
t
d

e

d
t
c
S
e

c
e
s
w

Algorithm 1 The DQPF algorithm for abrupt-motion tracking.
Input: : The state and the measurement of target, the number of velocity space elements Nv and the number of particles Np .
utput: : The estimation of target with abrupt-motion.
I. INITIALIZATION AND QUANTIZATION
01. Initialize velocities of Np classical particles;

02. Map each classical velocity to quantum eigenvelocity
⏐⏐V(Nv)

⟩
=

m  
11...1∑
v=00...0

Cv |v⟩;

II. PREDICTION
03. Initialize Np quantum particles according to step 2;
04. Propagate quantum particle according to every |v⟩ with amplitude Cv simultaneously while target moving;
III. WEIGHT CALCULATION
05. Calculate the weight of each |v⟩ according to the measurement of target;
06. Execute the normalization of weights;
IV. GROVER’S RESAMPLING
07. Mark the |v⟩ with high weight as |̃v⟩ of each particle;
08. Apply the quantum oracle O1 to |̃v⟩ according to Eq. (8);
09. Achieve the Grover iteration by the unitary transformation G according to Eqs. (9)–(10);
10. Update the amplitude of |̃v⟩;
V. QUANTUM MEASURING
11. Measure each quantum particle and the

⏐⏐V(Nv)
⟩
collapses;

12. Obtain new classical particle swarm for next tracking.
Fig. 4. The random motion trajectory when Np = 90.

The target travels 100 steps at each simulation scenario, and
he trajectories are recorded. The other four particle filters (CMCR,
R, IA-MCMC, and QPF) are also performed in each simulation
cenario. The accuracy criterion expressed as the Euclidean dis-
ance between the estimation and the actual state of the target is
efined as follows:

rror =

PT − P̂

2

=

√(
xT − x̂

)2
+

(
yT − ŷ

)2 (12)

where ∥ · ∥2 denotes the Euclidean norm. PT=[xT , yT ]T is the
actual coordinate and P̂=

[
x̂, ŷ

]T is the estimation. The Euclidean
istance clearly describes the estimation deviation from the ac-
ual state at each step. After iteration, we performed a statistical
alculation on all error samples generated in the iteration process.
tatistical results analyze the effectiveness of each algorithm in
ach scenario.
As we all know, the traditional particle filter algorithm’s ac-

uracy depends on sample size [14]. However, the computation
fficiency decreases tremendously when setting a large sample
ize. The proposed DQPF solves this problem. In our simulation,
e changed the number of particles Np to execute experiments

to verify the effectiveness of DQPF. The number of particles grad-
ually increases, and then the error trends of the five filtering
algorithms are observed.
258
Fig. 5. The random motion error.

4.2. Random motion simulation

Fig. 4 visually shows the random motion trajectory (take the
situation when Np = 90, for example). As can be seen, the
target is moving erratically. The abrupt motion almost occurs
at each step. Fig. 5 shows the error trends of the five filtering
algorithms as the number of particles increases. Fig. 5-(a) and -(b)
visually show the trends of mean and variance of error samples,
respectively.

As Np increases, the average error and the corresponding stan-
dard deviation of CMCR, SR, and IA-MCMC show a gradually
decreasing trend, as shown in Fig. 5. It proves that the accuracy
and stability of traditional particle filters depend on the sample
size. The larger sample size makes the estimation more accurate
and stable. As a traditional particle filter aiming at abrupt motion
tracking problems, IA-MCMC outperforms the other two in per-
formance. The maximum average error of IA-MCMC 1.56 m is less
than corresponding values of CMCR and SR when Np = 10. The
superiority of IA-MCMC is not affected by the change in particle
number.

As shown in Fig. 5, QPF’s average error and corresponding
standard deviation always fluctuate. This proves that the QPF
is almost unaffected by particle number. The QPF’s accuracy is
better than classical particle filters when Np is small. However,
classical methods, especially IA-MCMC, gradually outperform QPF
in performance as Np increases. For example, the average error
and the corresponding standard deviation of IA-MCMC are less
than the corresponding values of QPF when Np > 50. This proves
that the advantages of QPF are limited and can be surpassed by

classical algorithms.
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Fig. 6. The rectangle motion trajectory when Np = 90.

Fig. 7. The rectangle motion error.

Fig. 8. The traversal motion trajectory when Np = 90.

As for the proposed DQPF, the average error and the corre-
sponding standard deviation keep relatively stable in Fig. 5. This
indicates that DQPF is not only not affected by particle number
but also has good stability. Moreover, its performance obviously
outperforms the other four methods in accuracy and stability.
Above all, the proposed DQPF is insensitive to the number of
particles. Furthermore, it reaches a more accurate estimation with
fewer particle numbers, which indicates the superiority of DQPF
for random motion.

4.3. Rectangle motion simulation

Fig. 6 visually shows the rectangle motion trajectory (take
the situation when Np = 90, for example). As can be seen, the
target changes the heading direction 90◦ counterclockwise every
20 step. The abrupt motion only occurs when the target changes
the heading direction counterclockwise. Fig. 7 shows the error
259
Fig. 9. The traversal motion error.

rends of the five filtering algorithms as the number of particles
ncreases. Fig. 7-(a) and -(b) visually show the trends of mean and
ariance of error samples, respectively.
In terms of three classical particle filters, the average error and

he corresponding standard deviation show a gradually decreas-
ng trend as Np increases, as shown in Fig. 6. This phenomenon
is similar to random motion, which depends on the sample size.
However, all three classical algorithms in the rectangular mode
are improved compared with the random mode. For example,
the maximum average error of SR 1.82 m is less than the corre-
sponding values in the randommode. It can be seen that although
the frequency of abrupt motion is reduced, the effect on the
general classical filtering algorithm is still adverse. Nevertheless,
the classical algorithm can adapt to regular motion.

Regarding QPF, the accuracy and stability have improved than
the random mode’s. As shown in Fig. 6, there is no significant
fluctuation, which differs from Fig. 5. Furthermore, the maximum
average error of QPF 0.32 m is smaller than the minimum average
error 0.53 m in the random mode. Besides, QPF is almost always
superior to classical particle filters. It proves that QPF can deal
with motion mode with a low frequency of abrupt motion.

As for the proposed DQPF, the average error and the corre-
sponding standard deviation keep relatively stable. Like QPF, the
accuracy and stability have improved than the random mode’s.
The average error of DQPF remains at around 0.10 m, while the
standard deviation holds steady. Compared with QPF, DQPF has
more advantages in precision and stability. This once again proves
the effectiveness of DQPF.

4.4. Traversal motion simulation

Fig. 8 visually shows the traversal motion trajectory (take the
situation when Np = 90, for example). As can be seen, the target
keeps the step distance unchanged, moves straight for 10 steps,
and then turns back. The abrupt motion occurs when the target
turns back. Fig. 9 shows the error trends of the five filtering
algorithms as the number of particles increases. Fig. 9-(a) and -(b)
visually show the trends of mean and variance of error samples,
respectively.

In traversal mode, the frequency of abrupt motion is mainly
up-regulated than in rectangle mode, as shown in Fig. 8. In
terms of five improved particle filters, the error trends in this
mode are similar to the one in rectangle mode, which can be
analyzed simply by comparing Fig. 9 with Fig. 7. The traversal and
rectangle motion share a common characteristic: an occasional
abrupt movement occurs after a period of regular movement.
This also often happens in daily life. It can be analyzed that the
proposed DQPF is more accurate and stable than other particle
filters in motion mode with occasional abrupt motion in daily life.
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Fig. 10. The rectilinear motion trajectory when Np = 90.

Fig. 11. The rectilinear motion error.

Fig. 12. The circular motion trajectory when Np = 90.

.5. Rectilinear motion simulation

Fig. 10 visually shows the rectilinear motion trajectory (take
he situation when Np = 90, for example). As can be seen, the tar-
get keeps the step distance and the heading direction unchanged.
There is no abrupt motion that occurs in rectilinear mode. Fig. 11
shows the error trends of the five filtering algorithms as the
number of particles increases. Fig. 11-(a) and -(b) visually show
the trends of mean and variance of error samples, respectively.

Although QPF maintains good stability in rectilinear mode, it
does not seem to be as accurate as in rectangle or traversal mode.
For example, the average error of QPF remains at around 0.61
m, while the corresponding value holds steady at around 0.26 m.
t proves that QPF is not good at motion mode with no abrupt
otion.
260
Fig. 13. The circular motion error.

All three classical particle filters have a good performance.
Their accuracy and stability gradually approach DQPF as Np in-
reases, as shown in Fig. 11. This demonstrates that the classical
article filter is sufficient to solve the tracking problem of reg-
lar motion when Np is sufficient. However, the proposed DQPF
till shows excellent performance and is independent of sample
ize in rectilinear motion. The average error of DQPF remains at
round 0.17 m, while the standard deviation holds steady. This
roves that DQPF is also suitable for regular motion.

.6. Circular motion simulation

Fig. 12 visually shows the circular motion trajectory (take the
ituation when Np = 90, for example). As can be seen, the
arget moves in a uniform circle. There is no abrupt motion that
ccurs in circular mode. Fig. 13 shows the error trends of the five
iltering algorithms as the number of particles increases. Fig. 13-
a) and -(b) visually show the trends of mean and variance of
rror samples, respectively.
As we all know, uniform circular motion is also a regular mo-

ion. It can be seen that the error trends in this mode are similar
o the ones in rectilinear mode, which can be analyzed simply by
omparing Fig. 13 with Fig. 11. Regarding QPF, the variance of the
rror sample has increased overall than the corresponding value
n rectilinear mode. This illustrates the limitations of QPF.

Moreover, all three classical particle filters a little outperform
he proposed DQPF when Np > 50. On the one hand, it can be
explained that the classical methods are more adaptive to regular
motion when particle number is enough. On the other hand, there
is some probability that the quantum particle collapses in a low-
probability state. It harms the performance of regular motion
tracking. Even so, DQPF still has excellent accuracy and stability,
especially in solving the problem of abrupt motion tracking.

4.7. Computational complexity analysis

The computational complexity of classical particle filters is
O(Np) according to the big O notation [26–28]. It declares that the
particle number severely influences the classical particle filters’
complexity. As we all know, the classical particle filter has a
trade-off between precision and complexity. If the particle num-
ber is insufficient, it is challenging for particles to estimate the
actual state after multiple iterations. Nevertheless, the system’s
real-time requirements cannot be guaranteed by enlarging the
particle number. However, as mentioned in Section 3, the com-
putational complexity of DQPF is at most O(

√
Nv). It declares

that the particle number does not influence the computation
efficiency of the proposed DQPF. The complexity is only up to
the number of velocity space elements. Since DQPF satisfies the
condition

√
Nv ≪ Np, its computational complexity is superior

to classical particle filter. The more accurate estimation can be
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o
btained once the values of Nv and Np are appropriate in DQPF,
and meanwhile, the real-time requirements of the system are
met.

5. Conclusions

This paper proposed a new modified particle filter method
DQPF which avoids the problems of particle impoverishment and
sample-size dependency by introducing quantum characteristics.
We apply the concept of quantum superposition to transform
classical particles into quantum particles. Quantum represen-
tation and corresponding quantum operations are come up to
utilize quantum particles. The superposition property of quan-
tum particles avoids the concerns of particle impoverishment
and sample-size dependency. The proposed DQPF obtains better
accuracy and stability with fewer particles. A smaller sample size
also helps to reduce computational complexity. Moreover, it has
significant advantages for abrupt-motion tracking. The quantum
particles are propagated at the prediction stage. They will exist
at possible places when abrupt motion occurs, which reduces
the tracking delay and enhances the tracking accuracy. Numerical
experimental results demonstrated that the DQPF is not suscep-
tible to motion mode and particle number while maintaining
excellent accuracy and stability. Our future work will focus on in-
depth theoretical research on the convergence of DQPF and other
quantum-inspired algorithms.
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