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Uncertainty-Constrained Belief Propagation for
Cooperative Target Tracking
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Abstract—Cooperative localization is essential for many
Internet of Things (IoT)-related applications in harsh environ-
ments. Generally, the inertial navigation system is self-contained
and adopted as the basis of a cooperative tracking system,
but it still faces the problem of accumulated errors and
cannot provide long-term, high-precision positioning. The par-
ticle filter (PF) is widely used to fuse multiple information
to inhibit accumulative errors. However, particle degradation
and impoverishment remain unsolved. This article proposed
an IMU/time-of-arrival (TOA) fusion-based tracking method,
namely, uncertainty-constrained belief propagation (UCBP). We
address particle degradation and impoverishment by introduc-
ing uncertainty-constrained optimization into belief propagation
(BP). An uncertainty-constrained resampling (UCR) method
is applied to quantify the uncertainty in cooperative systems.
Hierarchical resampling is realized to solve the particle impov-
erishment issue. Meanwhile, particle degradation is resolved
through constrained resampling while ensuring the diversity of
particles. Furthermore, we illustrated the factor graph (FG)
structure of UCBP to mitigate the accumulation of errors through
message fusion over the graph. Compared with the state-of-the-
art methods, our proposed UCBP algorithm has better precision
and robustness without introducing much time overhead.

Index Terms—Accumulative error, belief propagation (BP),
cooperative localization, factor graph (FG), multisource fusion,
uncertainty constraint.

I. INTRODUCTION

IN LAST decades, cooperative target tracking has been
drawing the attention of various location-based applica-

tions, such as autopilot [1], [2], emergency search and res-
cue [3], [4], and pedestrian navigation [5]–[7]. In cooperative
scenes, mobile nodes should infer their location based on inter-
sensor measurements and wireless information exchanged with
others [8]. Specifically, the localization process consists of two
stages [9]. The first phase is the measurement, during which
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the mobile node measures internal state information (e.g.,
using an inertial measurement unit) and estimates its posi-
tion based on direct communication with neighboring nodes or
anchors. The second phase is the update, in which the mobile
node infers its state based on internal measurements, estimated
location information, and state information from neighboring
nodes.

The measurement phase is affected by the uncertainty
due to multiple sources, such as noise, multipath, blockages,
interference, clock drifts, etc [10], [11]. The underlying trans-
mission technology is critical in how these sources affect the
measurements. The global navigation satellite system (GNSS)
can provide essential support for most applications. But in
harsh environments, such as building ruins, urban canyons,
and underground seabeds, the probability of signal degrada-
tion and blockage is high, which limits its practical usage [12].
Ultrawide bandwidth (UWB) [13] is a promising alternative
for localization in communication-constrained environments.
Time-of-arrival (TOA)-based UWB does not require unique
timestamps or specific devices to achieve accurate position-
ing in some conditions [14]. However, in harsh environments,
TOA-based techniques are often affected by nonline-of-sight
(NLOS) [15], resulting in decreased accuracy. IMU-based iner-
tial navigation can realize target tracking in unknown areas
without deploying additional base stations. However, its posi-
tioning errors will accumulate over time due to the inherent
characteristics of dead reckoning. The particle filter (PF) can
restrain the accumulative errors, but it faces the problem of
particle degradation and impoverishment in the resampling
process [14]. In short, TOA and IMU-based methods have
significant limitations during the measurement process. The
development of multisource cooperative tracking [17]–[19]
provides a new direction for solving these issues in require
for high precision and efficiency. IMU/TOA fusion [14] is
more reliable, but challenges remain in how to quantify the
uncertainty during the measurement phase to achieve higher
precision target tracking.

For the update phase, the factor graph (FG) [22] is a widely
used probability graph in Bayesian inference. It provides
an abstract graphical representation scheme for multisource
information fusion in cooperative tracking problems. Typical
use cases include pedestrian collaborative navigation [23] and
cooperative aircraft localization [24]. The target node can then
cooperatively infer its location by message passing. When the
decomposed FG matches the network topology, efficient mes-
sage passing for distributed inference can be used, such as
belief propagation (BP) and mean-field methods [25]. The
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multisource cooperative tracking based on IMU/TOA fusion
can also be viewed as an instance of the BP to realize the
information fusion in the FG [23]. However, making full use
of the dynamic constraints in collaborative systems is still an
open problem in studying BP methods.

Considering the mentioned issues in the measurement and
update phases, this article proposes an IMU/TOA fusion-based
tracking method using uncertainty-constrained BP (UCBP).
An uncertainty-constrained resampling (UCR) method is
proposed to quantify the uncertainty in cooperative systems.
UCR establishes error ellipses with different confidence prob-
abilities and realizes hierarchical resampling based on the
internal information to solve the particle impoverishment
problem. Based on UCR, we extend the formal nonparamet-
ric BP (NBP) [26] using IMU/TOA fusion. Finally, the FG of
UCBP for cooperative target tracking is illustrated in detail.
UCBP can be expressed as probability information spreading
on the FG and then reused the information to improve the over-
all efficiency [28], [29]. In summary, the main contributions
of this article are twofold as follows.

1) We proposed the UCBP algorithm by introducing
uncertainty-constrained optimization into BP. A UCR
method is applied to quantify the uncertainty in coopera-
tive systems. Hierarchical resampling is realized to solve
the particle impoverishment issue. Meanwhile, particle
degradation is resolved through constrained resampling
while ensuring the diversity of particles.

2) We demonstrated the proposed uncertainty-constrained
BP framework using FG. The fused information is inter-
acted in a collaborative network to maintain computa-
tional efficiency. UCBP achieves significantly improved
accuracy without introducing a high computational cost.

The remainder is organized as follows. Section II defines
the collaborative network. Section III elaborates on the fusion
BP algorithm based on uncertainty-constraint resampling.
Section IV details UCBP and its FG representation. Section V
conducts numerical simulations to verify the performance of
the UCBP. Finally, conclusions are drawn in Section VI.

II. PROBLEM DEFINITION

In Section II-A, we first present a formal description of the
problem discussed in this article. Then, some premises and
assumptions are given in Section II-B. The measured distance
between moving targets is used as the mutual information in
the collaborative network. The moving target can also use the
inertial sensor to obtain internal information, such as heading
angle and step length in the moving process. Target nodes
exchange data in real time and realize cooperative tracking.

A. Formal Description

A total of N nodes are defined in the collaboration network,
which are NT targets and NA fixed nodes, i.e., anchors. Each
target posseses a distance-ranging sensor measuring exter-
nal information and an inertial sensor measuring internal
information. The set of all nodes is defined as �N =
{1, 2, 3, . . . , N}, where the set of targets and anchors are �T

and �A, respectively. Then, we denote �N = �T + �A.

The motion process is represented as a sequence of discrete
measurements at sufficiently small intervals, denoted as tk,
k = 0, 1, 2, . . . , K. The mutual information between the nth
target and others is Zmut

1:K,n (n ∈ �T ), and the internal is Zself
1:K,n.

Define the position and velocity of the target n at time tk as
Xk,n = [xk,n, yk,n]T and Vk,n = [vxk,n, vyk,n]T , respectively.

Assume that the target conforms to the random walk
model [31]. The position of target n at time tk is defined as
Xk,n, which can be transferred from the state Xk−1,n at time
tk−1. The update process could be expressed as follows:

Xk,n = Xk−1,n + V̂k,n · ts (1)

where ts is the sampling time interval, and V̂k,n indicates the
velocity at time tk, which could be measured by the accelerator,
where

V̂k,n = Vk,n + ε1,k, ε1,k ∼ N
(
μ1,k, σ1,k

2
)

(2)

where Vk,n represents the actual velocity at time tk, and ε1,k is
a Gaussian distribution [30] with mean μ1,k and variance σ1,k.
Next, the definitions of ε2,k, ε3,k, and ε4,k are consistent with
ε1,k. Therefore, the vector V̂1:K,n = [V̂1,n, V̂2,n, . . . , V̂K,n]

T

indicates the velocity of target n over time series. Assume
that ts equals 1 s, and all targets are moving at a constant
speed.

Denote θ̂k,n as the heading angle of target n measured by
the gyroscope at time tk, which is as follows:

θ̂k,n = θk,n + ε2,k, ε2,k ∼ N
(
μ2,k, σ2,k

2
)

(3)

where θk,n represents the true horizontal angle at time tk.

Therefore, the vector θ̂1:K,n = [θ̂1,n, θ̂2,n, . . . , θ̂K,n]
T

indicates
the angle conditions of target n over time series.

Let Ŝk,n be the step length of target n at time tk, which could
be obtained by quadratic integration of acceleration, then

Ŝk,n = Sk,n + ε3,k, ε3,k ∼ N
(
μ3,k, σ3,k

2
)

(4)

where Sk,n is the actual displacement of target n between
tk−1 and tk, i.e., Sk,n = ‖Xk,n − Xk−1,n‖. Therefore, the vec-

tor Ŝ1:K,n = [Ŝ1,n, Ŝ2,n, . . . , ŜK,n]
T

indicates the step length
conditions of target n over time series.

In summary, the update process could be formulated as
follows:

Xk,n = Xk−1,n + f
(
θ̂k,n, Ŝk,n

)

=
[

xk−1,n

yk−1,n

]
+
⎡
⎣ Ŝk,n · cos

(
θ̂k,n

)

Ŝk,n · sin
(
θ̂k,n

)
⎤
⎦. (5)

Finally, the inertial measurements could be denoted as
Zself

1:K,n = [θ̂1:K,n, Ŝ1:K,n].
At time tk, the distance information between target n and

another s ∈ �N\{n} is defined as d̂k,n,s, namely

d̂k,n,s = dk,n,s + ε4,k, ε4,k ∼ N
(
μ4,k, σ4,k

2
)

(6)

where dk,n,s is the actual distance between target n and
another s at time tk, i.e., dk,n,s = ‖Xk,s − Xk,n‖. Thus,

d̂1:K,n,s = [d̂1,n,s, d̂2,n,s, . . . , d̂K,n,s]
T

indicates the distance
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between nodes n and s over time series. Finally, the distance
measurement outside the node, i.e., the mutual information
between nodes is Zmut

1:K,n =
∑

s∈�N\{n} d̂1:K,n,s.

B. Premises and Assumptions

This article is to realize real-time target tracking with
internal and mutual information fusion. A global function can
be expressed as f (X̂1:K, X0:K, Z1:K), where X̂1:K represents the
posterior position information of all nodes from time t1 to time
tk, X0:K is the prior position information, and Z1:K indicates all
the measured information. The final estimate is the posterior
position of the target node. Therefore, the global function can
be expressed as follows:

f
(

X̂1:K, X0:K, Z1:K

)
� p
(

X̂1:K |X0:K, Z1:K

)

= p
(

X̂1:K |X0:K, Zself
1:k , Zmut

1:k

)
. (7)

Based on the general definition in sensor networks [27], for
better reasoning below, we present some reasonable premises
and assumptions in the form of probability functions.

Premises:
1) The priori probability of target n’s location: p(X0,n).
2) Location of anchor m: Xm=1:NA .
3) The motion model of target n at time tk: p(Xk,n|X̂k−1,n).
4) The internal information of target n at time tk:

p(Zself
1:k,n|Xk,n, X̂k−1,n).

5) The mutual information of target n at time tk:
p(Zmut

1:k,n|Xk,n, X̂k−1,n).
6) The resampling of target n at time tk: p(X̂k,n|Xk,n).
Assumptions:
1) Assume that the location of one anchor is fixed, and its

corresponding probability should be set as 1. Therefore,
all the following assumptions (except Assumption 6) are
also valid for anchors. In the subsequent chapters, we
treat the anchors and targets equally.

2) The movement of all target nodes conforms to the mem-
oryless random walk model, and the resampling process
conforms to the Markov-like property

p
(

X̂1:k, X0:k

)
= p(X0) �

K∏
k=1

(
p
(

Xk|X̂k−1

)
� p
(

X̂k|Xk

))
.

(8)

3) The movement of the target is conditionally independent
of each other

p
(

Xk|X̂k−1

)
=
∏

n∈�T

p
(

Xk,n|X̂k−1,n

)
. (9)

4) The target nodes are conditionally independent of each
other during the resampling process

p
(

X̂k|Xk

)
=
∏

n∈�T

p
(

X̂k,n|Xk,n

)
. (10)

5) The mutual information between the targets during the
movement only depends on their positions and has
nothing to do with other information

p
(

Zmut
1:K |X̂1:K, X0:K, Zself

1:K

)
= p
(
Zmut

1:K |X0:K
)
. (11)

6) The internal information of all targets is conditionally
independent of each other and only depends on their
locations at current time and the previous time

p
(

Zself
1:K |X̂1:K, X0:K

)
=

K∏
k=1

p
(

Zself
1:k |Xk, X̂k−1

)
. (12)

7) The internal information of different targets at time tk is
conditionally independent of each other

p
(

Zself
1:k |Xk, X̂k−1

)
=
∏

n∈�T

p
(

Zself
1:k,n|Xk,n, X̂k−1,n

)
. (13)

8) The mutual information of all target nodes is condition-
ally independent of each other at different times and
only depends on their current positions

p
(
Zmut

1:K |X0:K
) =

K∏
k=1

p
(
Zmut

k |Xk
)
. (14)

9) The mutual information between any target node and the
others at time tk is conditionally independent of each
other and only depends on their locations

p
(
Zmut

k |Xk
) =

∏
n∈�T

∏
s∈�N\{n}

p
(

d̂k,n,s|Xk,n, Xk,s

)
. (15)

III. UNCERTAINTY-CONSTRAINED NBP RESAMPLING

In this section, we first present the extended NBP using
IMU/TOA fusion in Section III-A. Then, in Section III-B, a
UCR method is demonstrated to solve the particle degradation
and impoverishment.

A. IMU/TOA-Based Nonparametric Belief Propagation

NBP [26] uses a set of weighted particles {wi
t, xi

t} to repre-
sent the posterior probability distribution of the target state. It
uses spatial information, i.e., the distance between nodes, to
update the particles’ weights. Assuming that a collaborative
network has NT targets and NA anchors. At time tk, the posi-
tions of target n ∈ �T and the other target s ∈ �N\{n} are
Xk,n and Xk,s, respectively. Then, the distance between them
is denoted as follows:

d̂k,n,s =
∥∥Xk,n − Xk,s

∥∥+ ε4,k

ε4,k ∼ N
(
μ4,k, σ4,k

2
)
. (16)

The specific goal of target tracking is to estimate the max-
imum posterior position for a given set of observations. If
the noise is Gaussian distribution and the probability of the
measured distance is constant, the joint estimation becomes
a nonlinear least squares optimization [15]. In this case, we
assume a model where the probability of detecting nearby
sensors decreases with the squared exponent [26]

Po
(
Xk,n, Xk,s

) = exp

(
−
∥∥Xk,n − Xk,s

∥∥2

2R2

)
. (17)

First, at the initial time tk, there is a priori state func-
tion f (X0,n) for target n, and R weighted sample particles are
obtained from the prior function. These R particles will be
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copied and filtered under the NBP and passed from time t0 to
tk. Based on the above premise, at time tk, there are R particles
{wi

k,n, Xi
k,n}i=1:R

upon Xk,n of target n. Next, we take target n
as an instance to illustrate the interaction process between it
and target l ∈ �T\{n}, as well as anchors.

1) Interaction With Targets: First, we compute a Gaussian
mixture estimate of the outgoing message mj

k,n,l from l to n.
For any target l, it ranges distance with target n, but target l
does not know in which direction target n is (under random

walk model). Therefore, all sample particles {wj
k,l, Xj

k,l}
j=1:R

of l move in a random direction by d̂k,n,l plus a noise

mj
k,n,l = xj

k,l +
(

d̂k,n,l + v
)
· [cos

(
θ j); sin

(
θ j)] (18)

where θ j ∼ U[0, 2π) and v ∼ N(0, δ), namely, θ j follows the
uniform distribution, and v follows the Gaussian distribution.
Each particle Xi

k,n of target n is calculated on basis of Po(·)
[i.e., (17)]. Then, the particle weight is updated by

wi
k,n,l =

⎛
⎝

R∑
j=1

po

(
mj

k,n,l, Xi
k,n

)⎞
⎠ � wi

k,n. (19)

Next, normalize the particle weights of target n

wi
k,n =

wi
k,n,l∑R

i=1 wi
k,n,l

. (20)

Repeat the above process until all targets are traversed.
2) Interaction With Anchors: For any anchor m ∈ �A, it

ranges distance d̂k,n,m with target n. Since the location of the
anchor is known, we directly measure the distance between
the particle i of target n and the anchor Xk,m

di
k,n,m =

∥∥Xi
k,n − Xk,m

∥∥. (21)

Furthermore, as target n knows the location of anchor Xk,m,
we could update the particle weight by

wi
k,n,m = po

(
di

k,n,m, d̂k,n,m

)
� wi

k,n. (22)

Then, normalize the particle weights of target n. Repeat this
for the next anchor until all anchors are traversed.

B. Uncertainty-Constrained Resampling

Particle degradation is one of the fundamental problems
faced by PFs [32]. After a certain number of iterations, some
particles’ weights are too small that they should be ignored.
Resampling can discard particles with small weights and
copy those with large weights, effectively alleviating particle
degradation. Standard resampling methods include systematic
resampling, hierarchical resampling, residual resampling [32],
etc. These algorithms are hierarchical filtering based on the
weight threshold and are more efficient. However, during the
iteration process, the reduction in the number of particles
will lead the weights to be occupied by only a few parti-
cles, resulting in particle impoverishment. To this end, we
proposed an uncertainty-constrained resampling to complete
the redistribution of particle weights.

The particles are stratified by the confidence ellipse for
resampling. The basic concept of confidence ellipse originates

from the interval estimation of coordinate parameters [14].
When performing interval estimation on the scale η, for a
given small probability β, if an interval (r1, r2) can be found
such that p(r1 < η < r2) = 1− β. Then, (r1, r2) is called the
confidence interval of the scale η. For target n, its covariance
matrix of R particles {wi

k,n, Xi
k,n = (xi

k,n, yi
k,n)}i=1:R

at time tk
is defined as follows:

D =
[

cov
(
xk,n, xk,n

)
cov
(
xk,n, yk,n

)
cov
(
yk,n, xk,n

)
cov
(
yk,n, yk,n

)
]

(23)

where xk,n = [x1
k,n, x2

k,n, . . . , xR
k,n]

T
, and yk,n =

[y1
k,n, y2

k,n, . . . , yR
k,n]

T
. For each particle Xi

k,n, after intro-
ducing the error covariance matrix, the center of confidence
ellipse is expressed as follows:

η =
(

xi
k,n − xp

)2

λ1
+
(

yi
k,n − yp

)2

λ2
(24)

where λ1 and λ2 are the largest and smallest eigenvectors cor-
responding to the covariance matrix D, respectively. (xp, yp)

is the center of the particle set, and η is the scale of the con-
fidence ellipse. Furthermore, when the ellipse is tilted, let the
tilt angle between the ellipse’s major axis and the x-axis be α,
then

α = arctan

⎛
⎝λ1

(
yk,n

)

λ2

(
xk,n

)
⎞
⎠. (25)

Suppose the rotated coordinate is (x′, y′), then
{

x′ = xi
k,n cos α − yi

k,n sin α

y′ = xi
k,n sin α + yi

k,n cos α.
(26)

Finally, the confidence ellipse could be denoted as follows:

η =
((

x′ − xp
)

cos α + (y′ − yp
)

sin α
)2

λ1

+
(−(x′ − xp

)
sin α + (y′ − yp

)
cos α

)2
λ2

. (27)

In the resampling process, R particles are divided into three
different levels according to the confidence r1 and r2, which
are the probability that the particle will fall inside the inner
and outer ellipse, respectively. The number of particles outside
the outer ellipse is counted as Nl, which should be ignored.
The particles in the middle of these two ellipses are defined
as medium-weight particles, which should be reserved. Those
Nh particles located in the inner ellipse will be replicated as
follows. Copy the first Nt = Nl − �Nl/Nh� · Nh particles c1 =
�Nl/Nh�+2 times, and the remaining (Nh−Nt) particles c2 =
�Nl/Nh�+1 times. After the particles to be screened is copied,
the number of the particle set remains R. The selected particles
will also be the initial input in next iteration. When the particle
screening completed, the weights are redistributed

ŵi
k,n =

⎧⎨
⎩

ŵi
k,n, ηi

k,n < r1

ŵi
k,n, r1 ≤ ηi

k,n ≤ r2

0, ηi
k,n > r2

(28)
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where ηi
k,n is the distance between the particle i and the pre-

dicted center of target n at tk. Then, the number of particles
remains unchanged, but the total weight has changed. Particle
replication eventually leads to weight adjustment. For time
tk, the particle weight represents the a priori information of
tk−1. Here, the particle weight is reserved for filtering and
copying. The subsequent weight changes are due to the nor-
malization, reflecting the spatial information introduced during
particle replication. Finally, the estimated state is updated by
the weighted average

{
xk,n =∑R

i=1 ŵi
k,nxi

k,n

yk,n =∑R
i=1 ŵi

k,nyi
k,n.

(29)

IV. UNCERTAINTY-CONSTRAINED BELIEF PROPAGATION

AND ITS FACTOR GRAPH

In Sections IV-A and IV-B, we presented the global function
decomposition, local function decomposition, and correspond-
ing FGs of the problem described in Section II. Then, in
Section IV-C, the message passing rules of UCBP are given
based on BP. Finally, Section IV-D describes the particle-based
local function message passing process. The UCBP combines
NBP and UCR to utilize the ranging and inertial information.
NBP takes advantage of distance information without cumula-
tive errors, while UCR uses spatial–temporal optimized inertial
information to estimate the target’s position. Then, the UCBP
realizes the propagation and fusion of distance and inertial
information over the FG to solve collaborative issues.

A. Global Function Decomposition and Factor Graph

From Section II-B, we concluded that the problem sought
in this article could be expressed by a global function
f (X̂1:K, X0:K, Z1:K). It can also be denoted in the form of a
posterior probability function, namely

p
(

X̂1:K |X0:K, Z1:K

)
= p
(

X̂1:K |X0:K, Zself
1:k , Zmut

1:k

)

=
p
(

Zmut
1:K |X̂1:K, X0:K, Zself

1:K

)
� p
(

X̂1:K, X0:K, Zself
1:K

)

p
(
X0:K, Zself

1:K , Zmut
1:K

) . (30)

Substituting (11) into (30), we get

p
(

X̂1:K |X0:K, Z1:K

)

∝ p
(
Zmut

1:K |X0:K
)
� p
(

Zself
1:K |X̂1:K, X0:K

)
� p
(

X̂1:K, X0:K

)
. (31)

Then, substituting (8), (12), and (14) into (31)

p
(

X̂1:K |X0:K, Z1:K

)

∝ p(X0) �
K∏

k=1

(
p
(
Zmut

k |Xk
)
� p
(

X̂k|Xk

))
�

K∏
k=1

(
p
(

Xk|X̂k−1

)
� p
(

Zself
1:k |Xk, X̂k−1

))
. (32)

Fig. 1. FG of p(X̂1:N|X0:N , Z1:N ) when k = 0 : 2. The following abbrevi-
ations are adopted for simplicity: fn(X0,n) = p(X0,n), Sk,n(Xk,n, X̂k−1,n) =
p(Xk,n|X̂k−1,n) � p(Zself

1:k,n|Xk,n, X̂k−1,n), and f (Zmut
k , Xk, X̂k) = p(Zmut

k |Xk) �
p(X̂k|Xk).

Finally, substituting (9) and (13) into (32)

p
(

X̂1:K |X0:K, Z1:K

)

∝
N∏

n=1

(
p(X0,n)

K∏
k=1

(
p
(

Xk,n|X̂k−1,n

)
� p
(

Zself
1:k,n|Xk,n, X̂k−1,n

)))
�

K∏
k=1

(
p
(
Zmut

k |Xk
)
� p
(

X̂k|Xk

))
. (33)

Therefore, with factorization, the FG of (33) could be shown
as Fig. 1.

B. Local Function Decomposition and Factor Graph

On the basis of Section IV-A, we could further factorize the
local function p(Zmut

k |Xk) �p(X̂k|Xk). Substituting (10) and (15)
into p(Zmut

k |Xk) � p(X̂k|Xk) then leads to

p
(
Zmut

k |Xk
)
� p
(

X̂k|Xk

)

=
∏

n∈�T

⎛
⎝p
(

X̂k,n|Xk,n

)
�
∏

s∈�N\{n}
p
(

d̂k,n,s|Xk,n, Xk,s

)
⎞
⎠ (34)

where d̂k,n,s and d̂k,s,n can be regarded as the mutual
information between the target n and s. Thus, the content
represented by it is equivalent. Therefore, p(d̂k,n,s|Xk,n, Xk,s)

and p(d̂k,s,n|Xk,s, Xk,n) are regarded as the same function node
ϕk,n,s(Xk,n, Xk,s) in the factorization. Based on (34), the FG of
p(Zmut

k |Xk) � p(X̂k|Xk) could be shown as Fig. 2.

C. Message Passing of the Global Function

In Sections IV-A and IV-B, we presented the FG of global
function f (X̂1:K, X0:K, Z1:K). Next, based on the sum-product
algorithm [22], how message passing over these FGs will be
detailed, which mainly contains the message μSk,n→Xk,n(Xk,n)

passed by the function Sk,n to edge Xk,n, and the message
μX̂k,n→Sk,n

(X̂k,n) passed by edge X̂k,n to the function Sk+1,n.
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Fig. 2. FG of p(Zmut
k |Xk) � p(X̂k|Xk), where ϕn,s(Xk,n, Xk,s) =

p(d̂k,n,s|Xk,n, Xk,s), Pk,n = p(X̂k,n|Xk,n). μSk,n→Xk,n (�) represents the mes-
sage from function Sk,n to edge Xk,n, and μX̂k,n→Sk+1,n

(�) represents the

message from edge X̂k,n to function Sk+1,n.

Thereinto

μSk,n→Xk,n

(
Xk,n
)

∝
∫

Sk,n

(
Xk,n|X̂k−1,n

)
× μX̂k−1,n→Sk,n

(
X̂k−1,n

)
dXk,n

(35)

μX̂k,n→Sk,n

(
X̂k,n

)
= μPk,n→X̂k,n

(
X̂k,n

)
. (36)

As shown in Fig. 2, for each node at time tk, it mainly
consists of the message μXk,n→ϕk,n,s(Xk,n) by the edge Xk,n to
function ϕk,n,s, the message μϕk,n,s→Xk,n(Xk,n) by the function
ϕk,n,s to edge Xk,n, the message μXk,n→Pk,n(Xk,n) by the edge
Xk,n to function Pk,n, and the message μPk,n→X̂k,n

(X̂k,n) by

the function Pk,n to edge X̂k,n. As the FG in Fig. 2 is loopy,
there is generally a given number of cycles or termination
conditions. Thus, we assume that the number of cycles is T .
Let b0

Xk,n
(Xk,n) = μSk,n→Xk,n(Xk,n), then for t = 1 : T

μt
Xk,n→ϕk,n,s

(Xk,n) = bt−1
Xk,n

(Xk,n) (37)

μt
ϕk,n,s→Xk,n

(Xk,n) ∝
∫

p
(

d̂k,n,s|Xk,n, Xk,s

)

× μt
Xk,n→ϕk,n,s

(
Xk,n
)
dXk,n (38)

bt
Xk,n

(Xk,n) =
∫

μSk,n→Xk,n(Xk,n)

×
∏

s∈�N\{n}
μt

ϕk,n,s→Xk,n
(Xk,n)dXk,n. (39)

At the end of the loop, we can get

μXk,n→Pk,n(Xk,n) = bT
Xk,n

(Xk,n) (40)

μPk,n→X̂k,n

(
X̂k,n

)

=
∫

p
(

X̂k,n|Xk,n

)
×μXk,n→Pk,n(Xk,n)dX̂k,n. (41)

Based on these rules, the overall message passing for
f (X̂1:K, X0:K, Z1:K) is given in Algorithm 1, while the visu-
alized message passing process is detailed in Fig. 3.

Algorithm 1 Message Passing of f (X̂1:K, X0:K, Z1:K)

Input: {p(X0,n)}n∈�T
← initial position information of all nodes

Output: {μX̂k,n→Sk,n
(X̂k,n)}k=1:K

n∈�T
← posterior location information

of all nodes
for k← 1, 2, . . . , K do

if k = 0 then
μX̂0,n→S1,n

(X̂0,n) = μX0,n→S1,n(X0,n) = p(X0,n)

else
for n ∈ �T do

μSk,n→Xk,n(Xk,n) ∝
∫

Sk,n(Xk,n|X̂k−1,n)

× μX̂k−1,n→Sk,n
(X̂k−1,n)dXk,n

b0
Xk,n

(Xk,n) = μSk,n→Xk,n(Xk,n)

for t← 1, 2, . . . , T do
for s← 1, 2, . . . , N do

if
n ∈ �N and s = n

and {i, j} ⊂ �A
then

μt
Xk,n→ϕk,n,s

(Xk,n) = bt−1
Xk,n

(Xk,n)

end if
if n ∈ �T and s = n then

μt
ϕk,n,s→Xk,n

(Xk,n)

∝
∫

p(d̂k,n,s|Xk,n, Xk,s)

× μt
Xk,n→ϕk,n,s

(Xk,n)dXk,n
end if
if n ∈ �T then

bt
Xk,n

(Xk,n)

=
∫

μSk,n→Xk,n(Xk,n)

×
∏

s∈Q

μt
ϕk,n,s→Xk,n

(Xk,n)dXk,n

where, Q = �N\{n}
else

bt
Xk,n

(Xk,n) = b0
Xk,n

(Xk,n)

end if
end for

end for
μXk,n→Pk,n(Xk,n) = bT

Xk,n
(Xk,n)

μPk,n→X̂k,n
(X̂k,n)

=
∫

p(X̂k,n|Xk,n)×μXk,n→Pk,n(Xk,n)dX̂k,n

μX̂k,n→Sk,n
(X̂k,n)=μPk,n→X̂k,n

(X̂k,n)

end for
end if

end for

D. Particulate Realization of the Local Function Message

Based on (34), we could decompose p(Zmut
k |Xk) � p(X̂k|Xk)

into the FG shown in Fig. 2. The messages passing by variable
node Xk,n and function node ϕk,n,s(Xk,n, Xk,s) are presented
in Section IV-C. Next, based on the particle sequential sum-
product framework [33], we further derived the particle-based
message passing rules for variable node Xk,n and function node
ϕk,n,s(Xk,n, Xk,s).

1) Particulation of ϕk,n,s(Xk,n, Xk,s): We take the function
node ϕ1,1,s(X1,s, X1,1) of X1,1 and any node X1,s in Fig. 2
as an example to visualize the message passing process. To
easily understand the relationship between variable and func-
tion nodes, we convert the standard FG in Fig. 2 to a Forney
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(a) (b)

(c) (d)

Fig. 3. Message passing process of p(Zmut
1 |X1) � p(X̂1|X1) is detailed from steps (a) to (d).

one. Based on the message passing rules of the sum-product
algorithm over the FG, the rules for passing function nodes to
variable nodes are

μf→x(x) =
∑
∼{x}

⎛
⎝f (X)

∏
y∈n(f )\{x}

μy→f (y)

⎞
⎠ (42)

where n(f ) is the parameter set of f , and ∼ {x} represents all
the variables except x in n(f ). For the function node described
in Fig. 4(a), X1,s could be either a mobile target or an anchor,
while the corresponding particle-based messaging process is
inconsistent. Therefore, both conditions are considered.

If X1,s is a target node, the message (42) becomes

μϕ1,1,s→X1,1(X1,1) =
∫

ϕ1,1,s
(
X1,s, X1,1

)

× μX1,s→ϕ1,1,s(X1,s)dX1,s. (43)

Let H(X1,s) = μX1,s→ϕ1,1,s(X1,s), then (43) could be trans-
formed into

μϕ1,1,s→X1,1
(X1,1) =

∫
ϕ1,1,s

(
X1,s, X1,1

)
� H
(
X1,s
)
dX1,s. (44)

Apparently, it just conforms the Monte Carlo integration
form, thus we regard H(X1,s) as the probability distribu-
tion function of ϕ1,1,s(X1,s, X1,1). Therefore, (44) could be
transformed to the mean value form using the Monte Carlo
integration

μϕ1,1,s→X1,1
(X1,1) = E

[
ϕ1,1,s(X1,s, X1,1)

]

(a)

(b)

Fig. 4. Message passing process of function node ϕ1,1,s(X1,s, X1,1) and
variable node X1,1 is detailed from steps (a) to (b). The FG is converted from
the standard form to the Forney [29], where ϕ1,1,n is denoted as ϕ1,n for
simplicity.

= 1

R

R∑
i=1

ϕ1,1,s

(
Xi

1,s, X1,1
)

(45)

where Xi
1,1 is the sample extracted from the probability

distribution function H(X1,1).
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With the use of importance sampling, the message
μϕ1,1,s→X1,1

(X1,1) can be expressed as particle-based

information {wi
1,1, Xi

1,1}i=1:R
. The particles are generated by

the initial state function fn(X0,n) and transferred to the current
state by Sk,n(Xk,n, X̂k−1,n). It can be viewed as importance
sampling of the current state function of X1,s, namely

μϕ1,1,s→X1,1
(X1,1) ∼=

{
wi

1,1, Xi
1,1

}i=1:R
(46)

where Xi
1,1 = Xi

0,1, and wi
1,1 = ([

∑R
j=1 ϕ1,1,s(X

j
1,s, Xi

1,1)]/

[
∑R

i=1
∑R

j=1 ϕ1,1,s(X
j
1,s, Xi

1,1)]). The particle weights are
determined accordingly.

If X1,s is an anchor node, the message (46) becomes

μϕ1,1,s→X1,1(X1,1) =
∫

ϕ1,1,s(X1,s, X1,1)

× μX1,s→ϕ1,1,s(X1,s)dX1,s. (47)

Then, the information transmitted by μX1,s→ϕ1,1,s(X1,s) is
the coordinates X̄1,s of the corresponding anchor. At the same
time, the expression is transformed into

μϕ1,1,s→X1,1
(X1,1) = ϕ1,1,s

(
X̄1,s, X1,1

)
. (48)

Similarly, using the importance sampling to construct the
particle-based message, we could get

μϕ1,1,s→X1,1
(X1,1) ∼=

{
wi

1,1, Xi
1,1

}i=1:R
(49)

where Xi
1,1 = Xi

0,1, and wi
1,1 =

([ϕ1,1,s(X̄1,s, Xi
1,1)]/[

∑R
i=1 ϕ1,1,s(X̄1,s, Xi

1,1)]).
2) Particulation of Xk,n: We take X1,1 in Fig. 2 as an

example to draw the message passing process. Based on the
sum-product algorithm, the message passing from variable
nodes to the function is as follows:

μx→f (x) =
∏

h∈n(x)\{f }
μh→x(x) (50)

where n(x) is a collection of function nodes with x.
It is important to note that the message μX1,1→P1,1(X1,1) will

only be passed after the UCBP iteratively converges, as shown
in Fig. 4(b). In the iterative process, Fig. 4(b) represents the
message passed to the function node ϕ1,1,n, while it is the same
as the message passed to the function node P1,1. Therefore, the
method described below can also be applied to the message
passed to the function node ϕ1,1,n.

In the situation of Fig. 4(b), the message (50) becomes

μX1,1→P1,1(X1,1) = μS1,1→X1,1
(X1,1) �

N∏
s=2

μϕ1,1,s→X1,1
(X1,1)

(51)

where μS1,1→X1,1
(X1,1) and μϕ1,1,s→X1,1

(X1,1) can be expressed

as particle-based message {wi
1,1(f ), Xi

1,1}i=1:R
. Namely, f =

{S1,1, ϕ1,1,2, . . . , ϕ1,1,N}. The particle in the above message
represents the position of X1,1, so we only change its weight on
the variable node. The particles can be expressed nonparamet-
rically as the kernel density estimation (KDE) N(X1,1;Xi

1,1,)

[26] (for convenience, we assume the particles of each node
come from the same distribution, i.e., their variance fits ).

Algorithm 2 UCBP
Input: {X0,n}n∈�T

← priori information about the initial position
of all target nodes n
{Xm}m∈�A

← location information of all anchors m
Output: {X̂k,n}k=1:K,n∈�T

← posterior position information of all
target nodes n during the movement
for k← 0, 1, . . . , K do

for n ∈ �T do
if k = 0 then
{Xi

1,n}
i=1:R ∼ N(X0,n, δx)

{wi
1,n}

i=1:R ∼ N(μw, δw)

else
for i← 0, 1, . . . , R do

Xi
k,n ← f1(Zself

k,n , Xi
k,m, X̂i

k−1,n) � state transition
function

end for
for t← 0, 1, . . . , T do
{wi

k,n, Xi
k,n}

i=1:R←
f2({wi

k,n, Xi
k,n}i=1:R

n∈�T
, {Xm}m∈�A

, {dk,n,l}l∈�N\{n}) � NBP
Algorithm

(xp, yp)←∑R
i=1

(
wR

k,n � XR
k,n

)

{ŵi
k,n, X̂i

k,n}
i=1:R←

UCR({wi
k,n, Xi

k,n}
i=1:R

, (xp, yp)) � UCR Algorithm

{wi
k,n, Xi

k,n}
i=1:R ← {ŵi

k,n, X̂i
k,n}

i=1:R

if t = T then
{wi

k+1,n}
i=1:R ← {ŵi

k,n}
i=1:R

end if
end for
X̂k,n ←

∑R
i=1

(
ŵi

k,n � X̂i
k,n

)

end if
end for

end for

The particulation {wi
1,1(S1,1), Xi

1,1}i=1:R
of the message

μS1,1→X1,1
(X1,1) represents the prior state of node X1,1,

while the particulation {wi
1,1(ϕ1,1,s), Xi

1,1}i=1:R
of the message

μϕ1,1,s→X1,1
(X1,1) is expressed as the state of X1,1 after the

propagation of function ϕ1,1,s. Finally, we bring each particle’s
information for X1,1 into (51), then lead to

μX1,1→P1,1(X
i
1,1)

= N
(
X1,1;Xi

1,1,
)× wi

1,1(S1,1)

N∏
s=2

wi
1,1

(
ϕ1,1,s

)
. (52)

Above all, we detailed the massage passing of the proposed
UCBP. In summary, the pseudocode is given in Algorithm 2.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Environment

In this article, we use MATLAB to carry out numerical
simulations based on the random walk of the targets. The com-
puter used is configured with Windows 10 operating system,
4-core i5 CPU, and 8-GB memory. The target starts from
the initial position in each simulation and walks 60 steps
randomly. Experimental parameters are detailed in Table I.

Due to the difference in the number of anchors NA,
the following two typical scenarios are considered in
Sections V-B and V-C: 1) multitarget tracking with external
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TABLE I
PARAMETER SETTING

Fig. 5. Error distribution diagrams of different algorithms under multitarget
tracking.

anchors (NA > 0) and 2) multitarget without external anchors
(NA = 0). In each scenario, we compare our proposed UCBP
with NBP [26] and UCR [14]. In Section V-D, we further
analyze the parameter performance of the proposed UCBP.

B. Multitarget Tracking With Anchors (NA > 0)

In this experiment, NT = 3 and NA = 2. The target node
was guided to randomly walk 60 steps from the initial position,
and its movement trajectory {(xi, yi)}i=1:60 was recorded as the
ground truth. Then, we recorded the inertial measurements of
each step, and the target measured distances with all anchors
at each moment. Finally, we used the above information to
comprehensively estimate the position (x̂i, ŷi). The root-mean-
square error (RMSE) between the actual and predicted position
is used as the evaluation metric, namely

ei =
√√√√ 1

N

N∑
n=1

((
x̂i,n − xi,n

)2 + (ŷi,n − yi,n
)2) (53)

where i indicates the current time step, and N is the total
number of targets.

As shown in Fig. 5, UCBP combines distance and inertial
information to obtain the highest positioning accuracy, effec-
tively suppressing the speed of error accumulation. In addition,
NBP also gets relatively high accuracy. Its estimation mainly
relies on distance measurements, which do not accumulate
errors. The UCR is based on inertial constraint optimization,

Fig. 6. RMSE of different algorithms in multitarget tracking.

Fig. 7. Error distribution diagrams of different algorithms under multitarget
tracking without anchors.

and it slows down the error accumulation to a certain extent.
However, the accumulation issue still exists. UCBP uses UCR
to resample the particles and alleviate the particle degradation
in NBP. At the same time, UCR uses inertial information to
filter particles to mitigate the loss of particle diversity caused
by multiple sampling of particles with large weights in NBP.
We repeated the simulation 20 times and calculated the mean
square error, shown in Fig. 6. UCBP maintains the highest
accuracy, which verifies its superiority in multitarget tracking.

C. Multitarget Tracking Without Anchors (NA = 0)

In this experiment, NT = 3 and NA = 0. The other parame-
ters remain consistent with Section V-B. As shown in Fig. 7,
UCBP maintains the highest accuracy when canceling all
anchors in the collaborative network. Then, we repeated the
experiment 20 times, and UCBP maintained the highest accu-
racy, as shown in Fig. 8. Although the loss of anchor points
reduces the confidence of distance information, that of the
inertial information remains. UCBP corrects the error caused
by canceling anchors through constraint optimization based on
the fusion of distance and inertial information.

D. Parameter Analysis

The number of particles may significantly impact the
performance and execution time of the PF. Thus, this section
will conduct numerical simulations to assess how the number
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Fig. 8. RMSE of different algorithms in multitarget tracking without anchors.

Fig. 9. Average RMSE conditions under different particle numbers.

Fig. 10. Execution time under different particle numbers.

of particles affects the performance. In addition, various envi-
ronment parameters are considered to verify the robustness of
UCBP and related issues.

1) Number of Particles: We take the scenario in Section
V-C to evaluate the impact of the number of particles on the
accuracy and the execution time. Then, the optimal number of
particles could be obtained and, at the same time, verify the
execution efficiency of UCBP.

The selection range of particles’ number is set as: Num =
{250, 500, 1000, 1500, 2000, 2500, 3000}. The error plotted in
Fig. 9 is the average of RMSE in 20 simulation runs in Section
V-C. The execution time of each algorithm in Fig. 10 is the
sum of 60 steps taken by all N target nodes.

1) As shown in Fig. 9, when the number of particles
is small, NBP suffers from particle degradation and

Fig. 11. Positioning errors under various angle variances.

Fig. 12. Positioning errors under various step variances.

impoverishment, leading to excessive errors. When the
number of particles is between 750 and 3000, all these
three algorithms maintain a relatively stable trend, and
the relative position remains unchanged.

2) From Fig. 10, we conclude that the optimal number
of particles selected is between 750 and 1000, while
the execution time of NBP and UCBP does not change
much. Ranging from 1000 to 3000 particles, the algo-
rithm’s execution time has increased significantly. It is
a more reasonable choice to consider comprehensively
to set the particles’ number between 750 and 1000.

3) From (18) and (19), we know that each particle of any
target node in NBP is calculated with all particles of
the others, so the time complexity of NBP is O(n2).
From (28) and (29), we know that UCR resamples each
particle of any target node, so its time complexity is
O(n). UCBP combines NBP and UCR, so its time com-
plexity is consistent with NBP. It is also confirmed by
the results shown in Fig. 10. It is worth mentioning
that, compared with NBP, UCBP has obtained a sig-
nificantly improved accuracy without introducing much
computational cost.

2) Robustness Verification: This section first compares six
algorithms under the two scenarios in Sections V-B and V-C
as a comparative experiment. In this way, it is possible to
judge whether the UCBP is the optimal choice for positioning
under various conditions. The evaluation metric of the errors
in Figs. 11–13 is the same as that in Fig. 10, and both are the
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Fig. 13. Positioning errors under various distance variances.

Fig. 14. Positioning errors under different numbers of target nodes and
anchors. NT represents the number of targets, and NA represents the number
of anchors.

average errors of 20 simulation rounds. We could draw the
following conclusions.

1) UCBP maintains the best performance with or with-
out external anchors. As shown in Figs. 11–13, when
one single variance increases, the performance of UCBP
remains the best. The reason is that the information
used by UCBP is a fusion of multiple sources, e.g.,
heading angle, step length, and distances. Whenever the
uncertainty of one source increases, that of the others
remains unchanged. With fusion, the uncertainty could
be substantially decreased to guarantee accuracy.

2) In Fig. 11, when the angle’s variance is small, the “NBP
with anchors” error is smaller than that of “UCBP with-
out anchors.” Therefore, when the uncertainty of the
angle and distance is small, the positioning accuracy
improvement brought by the distance alone is greater
than that caused by the fusion of inertial and distance.

3) In Fig. 12, when the step size’s variance is large, the
error of “NBP” is smaller than UCBP without anchors.
Likewise, in Fig. 13, when the distance variance is small,
the error of NBP is also smaller than UCBP without
anchors. The above phenomena all reflect that when
the uncertainty of inertial information is much greater
than that of distance, the fusion of inertial and distance
information’s confidence is lower than that of single-
source distance. Above all, it can be concluded that
the accuracy of multisource information fusion is not
necessarily higher than that of one single source. This

may have a guiding significance in practical multisource
fusion applications, such as equipment selections.

4) In Fig. 14, when the number of anchors remains
unchanged, the increase of target nodes’ number has
little impact on the errors. While keeping the num-
ber of target nodes unchanged, the number of anchors
decreases the errors, making the positioning more accu-
rate and consistent with common sense. UCBP maintains
high accuracy under different numbers of nodes.

VI. CONCLUSION

This article proposes an uncertainty-constrained BP algo-
rithm using IMU/TOA fusion for cooperative target tracking.
We introduced uncertainty-constrained optimization into BP
to address particle degradation and impoverishment. Besides,
we demonstrate the FG framework of UCBP to mitigate the
accumulated errors through message fusion over the graph.
Furthermore, we defined the message passing rules of the
UCBP to merge and propagate multisource messages. We fur-
ther derived particle-based message passing regulations based
on the particle sequential sum-product framework. The fused
information is interacted in a collaborative network to maintain
computational efficiency. By numerical simulations, UCBP
performs better than state-of-the-art methods, with or with-
out external anchors. At the same time, we conduct ablation
experiments to verify the robustness of the UCBP. Simulations
show that the UCBP has significantly improved accuracy with-
out introducing much computational cost. Nevertheless, there
is not much difference between its computational efficiency
and NBP’s. In our follow-on work, we may focus on reduc-
ing the computational overhead as much as possible while
maintaining high precision.
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