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Abstract
Source seeking problem has been faced in many fields, especially in search and rescue applications. We proposed a virtual 
structure-based spatial–temporal method to realize cooperative source seeking using multi-agents. Spatially, a circular forma-
tion is considered to gather collaborative information and estimate the gradient direction of the formation center. In terms 
of temporal information, we use the formation positions in time sequence to construct a virtual structure sequence. Then, 
we fuse the sequential gradient as a whole. Experimental results show that, compared with state-of-the-art, the proposed 
method can quickly and efficiently find the source so that the formation can minimize the movement distance during the 
moving process and increase the efficiency of source seeking. Numerical simulations confirm the efficiency of the scheme 
put forth. Compared with state-of-the-art source-seeking methods, the iterative steps of our proposed method are reduced 
by 20%, indicating that the method can find the signal source with higher efficiency and lower energy consumption, and 
better robustness.

Keywords Cooperative computing · Gradient estimation · Source seeking · Circular formation · Spatial–temporal 
information

1 Introduction

1.1  Motivation

In the last decade, cooperative source seeking based on 
multi-agents (or multi-robots) has been drawing more and 
more attention and widely used in many fields, such as oil 
exploration [1], odor source search [2], environmental moni-
toring [3], pollution detection [4], and first-response search 
and rescue (SAR) tasks [5], etc. The target signal source 
can generally be an electromagnetic signal, an acoustic sig-
nal, or a chemical or biological signal. For example, in the 
event of a gas leak, rescuers need to be dispatched to find 

the leak source. At the same time, the lives of the participat-
ing rescuers must be protected as much as possible to avoid 
causing serious safety accidents. For the sake of safety and 
efficiency, robots (also known as agents) replace search and 
rescue personnel to enter dangerous areas and perform SAR 
operations. For example, when looking for a missing back-
packer with a positioning signal device in the wild, drones 
or unmanned vehicles can be used to perform search and 
rescue missions in the face of complex terrain conditions. 
To sum up, a source search algorithm with higher accuracy 
and consistency is of practical significance in many aspects, 
such as industrial production, military security, and civil 
security (Fig. 1).

1.2  Related Work

Many existing signal source-seeking algorithms have 
evolved from the inspiration of biological behavior. Based 
on observations of spiny lobster behaviors, Consi et al. [6] 
proposed an agent that simulates the behavior of lobsters. 
In [7], inspired by silkworm moths, Kuwana et al. proposed 
a sourcing method that imitated the behaviors of silkworm 
moths seeking odor sources. Russell et al. [8] also verified 
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the applicability of the above-mentioned algorithm to chemi-
cal source tracing in airflow environments.

However, the aforementioned biometric methods are 
based on the inspiration of individual biological behavior 
and still face obvious limitations. They rely on the informa-
tion generally collected by only one single agent, such as in 
[6] and [7]. The individual agent lacks information interac-
tion with other agents, making it difficult for researchers to 
generate it in scenarios where multiple agents work together. 
Although the efficiency of source-seeking methods has been 
improved, the limitations of single agents will lead to insuf-
ficient information collection, and low robustness [6, 7].

Many organisms in the natural world forage and repro-
duce through group behaviors [9–11]. Clustered organisms 
can efficiently find food and avoid natural enemies through 
the individual division of labor and information exchange. 
It has the characteristics of high efficiency and strong adapt-
ability. Through the observation of biological populations, 
researchers proposed multiple swarm optimization algo-
rithms, such as ant colony [9], bee colony [10], and wolf 
colony [11]. In 1992, Marco Dorigo [9] proposed an ant col-
ony optimization algorithm by simulating the principles of 
ant social division of labor and cooperative foraging. Based 
on the inspiration of bee colonies to find nectar sources, 
Karaboga proposed the Artificial Bee Colony (ABC) [10] 
in 2005, which has the advantages of high accuracy and 
fewer control parameters. The algorithm was successfully 
applied to many fields such as artificial neural network train-
ing, and combination optimization [12]. In [11], Wu et al. 
were inspired by the cooperative hunting behavior of wolves 
and proposed the Wolf Pack Algorithm (WPA). The swarm-
ing behavior of fish schools has also attracted researchers’ 
attention. In [13, 14], Wu et al. and Said the behavior of fish 
swarm clusters inspired Al-Abri et al. to study a cooperative, 
collaborative mobile strategy called acceleration-deceler-
ation. It can simulate the swarm behavior of fish schools, 
avoiding light and move the agent team to the position of 
the signal source. Kennedy and Eberhart et al. [15] firstly 

proposed Particle Swarm Optimization (PSO), which was 
originally proposed to simulate the motion of bird swarms. 
Jatmiko et al. [16, 17] applied the particle swarm optimiza-
tion algorithm to the field of odor source localization, which 
uses multiple agents to find stationary odor sources. Song 
et al. [18] proposed an improved probabilistic particle swarm 
optimization algorithm for source seeking in a ventilated 
environment. As intelligent robots and sensors work very 
differently from real creatures, biological behavior-inspired 
methods also have limitations. Besides, uncoordinated 
agents can cause resource competition and conflicts, which 
affects the overall performance of multiple agents.

Gradient-based methods are also widely considered in 
source-seeking applications, mainly divided into single-
agent methods and multi-agents cooperative ones. As for the 
single agent, in [19–21], researchers used random gradient 
estimation to make the agent randomly move in the signal 
field, measure the spatial information of the signal field, and 
calculate the gradient direction of the signal field. Krstic 
et al. [19, 20] applied extreme value search control to make 
a single agent move to the local signal maximum in a noise-
free signal field. Anatasov et al. [21] made a single agent 
calculate the gradient by random movement and drove the 
agent to signal source with gradient information. However, 
the above-mentioned single-target-based gradient source 
seeking method still faces the following main problems: 

(1) Random gradient estimation can avoid local extremes 
to a certain extent, but the agent must constantly move 
back and forth to measure the signal strength to calcu-
late the gradient.

(2) The sudden failure of the single robot may lead to the 
failure of the whole source seeking a task, which means 
a low fault tolerance and robustness.

More and more researchers are focusing on cooperative 
source seeking. Petter Ögren et al. [22] used a coordinated 
movement strategy to drive the team to the signal source by 
the least square method. Zhu et al. [23] utilized the leader-
follower strategy combined with the least-squares to calcu-
late the gradient direction. In [24], Li et al. used the method 
of least squares estimator to enable the agent team to cal-
culate the gradient collaboratively. The method proposed 
by Ruggero Fabbiano et al. in [25] enables the agents to 
sustain a circular formation by maintaining the same rela-
tive angle and drive the agent team to the signal source with 
the gradient descent algorithm. In [21, 26, 27], Lara-Brinon 
et al. proposed a circular formation method, which enables 
the team to maintain a uniformly distributed circular forma-
tion, which means the agents calculate the gradient and drive 
themselves to the signal source.

However, the above-mentioned cooperative source-
seeking methods consider the agent-formation but only use 

Fig. 1  A typical application use case: multiple unmanned aerial vehi-
cles (UAVs) work cooperatively to search the missing tour pal who 
carries positioning devices
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spatial information in the signal field. They do not effectively 
use the information in time sequence alongside the gradi-
ent direction. Signal strength measurement and intelligent 
formation control will inevitably have errors. The source-
seeking results obtained by gradient estimation using error 
signals and position information are often of poor accuracy.

1.3  Contribution and Outlines

This paper aims to propose a source-seeking method that 
utilizes spatial and temporal information in the scalar signal 
field, improving source-seeking efficiency. The main contri-
butions could be summarized as follows. 

(1) Both spatial and temporal information in source-seek-
ing issues is taken into consideration. Spatially, a cir-
cular formation is considered to gather collaborative 
information and estimate the gradient direction of the 
formation center. In terms of temporal information, we 
use the formation positions in time sequence to con-
struct a virtual structure sequence. Then, we fuse the 
sequential gradient as a whole. The proposed method 
was verified from both theoretical and numerical 
aspects.

(2) A control strategy with minimum movement cost is 
proposed. This strategy rotates the target formation by a 
certain angle to make the robot team achieve the mini-
mum moving distance value when the circular team 
moves to the next position. Experimental results show 
that the proposed method can quickly find the source 
in as few distances as possible compared with the state-
of-the-art.

The rest of this paper is organized as follows. Section 2 puts 
forward the specific definition of the cooperative source 
seeking a problem. Section 3 focuses on the details of the 
proposed virtual structure-based method. Carmér-Rao 
Lower Bound (CRLB) and Lyapunov stability analysis are 
presented in Sect. 4. Section 5 demonstrates the experimen-
tal verification and detailed analysis. Conclusions are drawn 
in Sect. 6.

2  Problem Formulation

The problem of source seeking mainly refers to the searching 
of signal sources in unknown scalar fields. This paper pro-
posed a cooperative source-seeking method with the fusion 
of spatial and temporal information collected by agents in 
formation. The agents move advance along the gradient 
descent direction of the signal field and finally reach the 
position of the source.

We assume that the agent team moves in a two-dimen-
sional space. For each agent i in the group, its dynamic equa-
tions could be denoted as follows:

where pi ∈ ℝ
2 is the position vector of agent i, �i is the head-

ing angle, and the control inputs are the vehicle’s forward 
velocity vi and turning rate ui.

The nodes are collected into a vertex set V , while links 
between nodes are collected in an edge set E . Communica-
tion and measurements between nodes are bidirectional, so 
that ⇐V⇔E⇒ forms an undirected graph G . The agents can 
communicate with each other within the communication 
topology and generally include the following information: 
the coordinates, the speed, measured signal strength infor-
mation, etc. For simplicity, we assume that the communica-
tion between robot pairs is bidirectional and fully connected, 
and any pair of agents can exchange information with each 
other. The performance of the proposed algorithm under 
limited communication conditions is not within the scope 
of this paper and is left for further studies.

The scalar signal field distribution function is represented 
as z(p) ∶ ℝ

2
→ ℝ , which does not change over time. Its 

independent variable is coordinates of the sampling points 
denoted as p, and the signal strength reaches a maximum 
value at the source location ps.

3  Spatial–Temporal Source Seeking

This section detailed the proposed cooperative source-
seeking method, which combines the spatial and temporal 
information of the signal strength in the signal field. First, 
we give a brief introduction to the circular formation-based 
collective gradient estimation criterion to utilize the spatial 
distribution of the signal field. Then, we fuse the tempo-
ral information of the signal field by sequential sampling. 
Finally, we recursively perform the above steps, calculating 
the direction of the gradient until we find the source.

3.1  Gradient Estimation with Spatial Information

To exploit the spatial information in the signal field for gra-
dient estimation, we are inspired by methods in previous 
studies [21, 28], in which the swarm robot team maintained 
a uniform, symmetrical circular formation to calculate the 
gradient. The uniform and symmetric distribution of circular 
formation make the sum of the vectors from each robot to the 
center of the circular formation a zero vector, which means 

(1)ṗi = vi[cos 𝜃i, sin 𝜃i]
T

(2)�̇�i = ui
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we could use the spatial information to estimate the gradient 
with the individual measurement of each robot.

We consider a robot team consisting of N robots, and they 
are organized in a circular formation. These N robots are 
evenly distributed on a circle with radius R, each of whose 
coordinates is represented as pi = (xi, yi) , where x and y are 
respectively the abscissa and ordinate of robot i. A typical 
example is shown in Fig. 2, in which the number of agents N 
is set as 4. The agents in the team are uniformly distributed 
on a circle with a radius R and a center position of c(xc, yc) . 
Therefore, the ith robot among the evenly distributed agents 
could be observed as a position pi in the circular formation, 
which could be formulated as follows:

where R is the radius of the circular formation, D(�i) is the 
direction function of the ith agent in the circular formation, 
where �i = �0 +

2�i

N
 represents the azimuth angle of the ith 

agent, which could be referred to Fig. 2. It could be easily 
obtained that D(�i) = (cos�i, sin�i).

All agents in this circular formation are fully-connected. 
The swarm agent team can approximate the signal field gra-
dient through the weighted average of the signal strength 
collected by each individual agent [28], so as to achieve the 
purpose of spatial information fusion. Consider each agent 
measures the signal strength z(pi) at its current position 
pi(xi, yi) in the working space W.

The length of each vector 
⟶

cPi indicates the quantitative 
sampling value of each robot Pi . The sum of all correspond-
ing vectors ∇z(c) indicates the final gradient estimation of 
the whole circular formation

Theorem 1 The gradient direction of the circular formation 
center c is denoted as ∇z(c) , which could be calculated by 
combining the measured values of multiple agents around 
the circular formation center c with a radius R:

where N is the number of agents in formation, and the 
approximation error term o(R, c) satisfies:

(3)pi = c + R ⋅ D(�i)

(4)2

NR2

N∑

i=1

z(pi)(pi − c) = ∇z(c) + o(R)

where Hz is the Hessian matrix of z(x), and �max(x) is the 
supremum of x, so �max(Hz) is the supremum of the Hessian 
matrix Hz.

Proof The reader are referred to [28] for details on the 
proof.   ◻

As shown in Fig. 3, the gradient direction calculated by 
Eq. (4), incorporates the signal strength information of N 
agents at different spatial positions, so that the agent team 
can effectively estimate the gradient direction.

3.2  Gradient Estimation with Temporal Information

The above-mentioned gradient estimation method with cir-
cular formation makes full use of the spatial information in 
the cooperative network. To some extent, it can avoid the 
noise of individual source detection and improve source-
seeking accuracy and robustness. However, existing studies, 
including the spatial fusion method in the above section, do 
not consider the time-series information. With this in mind, 
in this section, we proposed a virtual structure-based method 
to reduce the influence of noise on gradient estimation by 
introducing time-sequential information to the circular for-
mation. Numerical simulations confirm the efficiency of the 
scheme put forth.

To integrate the temporal signal gradient and make the 
robot team find the source in the shortest distance with higher 
efficiency, the gradient is obtained by averaging the gradient 
in the target location and a nearby point. As the robot team 
moves, the target location enters the vision of the robot team. 
A circle with the target location as the center intersects the 
line segment formed by the target location and the previous 
round target location at one point. The robot team calculates 
the gradient when passing through this point. When the robot 
team arrives at the target location, the gradient is recalculated. 
The above two gradients are merged, which can be used as the 
gradient of the target location in the next step. The detailed 
process is described as shown in Fig. 4.

(5)‖o(R, c)‖ ≤ �max(Hz)R

Fig. 2  The robots are evenly distributed in a circular formation

Fig. 3  Spatial gradient estimation of circular formations
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In the k-th iteration, when the robot team calculates the 
target center position ck of the symmetrical formation in this 
round, the robot team moves toward the target center position 
ck . When ck enters the field of vision of the robot team, let the 
circle centered on ck and the expected vision radius d be circle 
C, take the point where the circle C and the line segment ckck−1 
intersect as ck−.

When the robot team is moving towards the target location, 
the robot team passes through ck− and ck successively, and 
calculates the gradient when reaching these two points, and 
obtains the gradient ∇z(ck−) and ∇z(ck).

The final gradient ĝk of the robot team at ck is obtained by 
calculating the weighted average of the above two gradients, 
and the next target location is calculated according to ĝk.

Finally, the center position ck+1 of the circular agent team in 
(k + 1)th round is given by

where ak is the step coefficient. The agent team continu-
ously generates three series of points { ck−, ck } through the 
above steps, and gradually moves to the vicinity of the signal 
source.

As for the step coefficient, it is generally denoted as

where a is a positive constant. s is a stability factor, which 
makes the algorithm have a large step size in the early itera-
tion without causing instability, and should be set to 5% 

(6)ĝk =
1

2

(
∇z(ck−) + ∇z(ck)

)

(7)ck+1 = ck + akĝk

(8)ak =
a

(k + 1 + s)�
, k=0,1,...

or 10% of the expected iterations of the algorithm. � con-
trols the attenuation rate of the gain, and should be set to 
� = 0.602 , as suggested in [29].

However, we need to modify ak . Because if the numerator 
a is constant, the gain coefficient ak decreases monotonically, 
which is not desirable. As the step length of the agent will 
gradually decrease, it may be trapped where the gradient esti-
mation value is small. Our proposed method uses a variable 
instead, which is inversely proportional to the magnitude of 
the gradient estimate. When the gradient estimation value is 
large, the agent travels in smaller steps; if the magnitude of the 
gradient estimation decreases, the gain coefficient increases 
by increasing the step size. Even if the signal field is very 
flat, the agent can perceive the gradient by increasing the step 
size. According to the above principles, the expression of ak 
is formulated as

r is set as the greedy coefficient, the larger the value of r, the 
larger the step size coefficient of each step, and � is a coef-
ficient that indicates the correlation between the current and 
the past gradients.

3.3  Control Strategy with Minimal Moving Cost

An algorithm based on gradient descent can drive the agent 
team to the target signal source position. However, without 
a good control strategy, the agents cannot use the gradient 
information. To more efficiently complete the source-seeking 
task, we propose a minimal moving distance control strategy.

During the movement of the agent team, the control strat-
egy in this paper does not require the agent to maintain a fixed 
circular formation all the time. It aims to minimize the overall 
movement distance from the start point to the source. After 
the next formation center coordinates are calculated to achieve 
the control goal, the circular agent team can rotate an arbitrary 
angle around the formation center. Then we use optimization 
methods to find the angle that minimizes the moving distance.

We denote the distance that the ith agent need move from 
current position pi to the next as L(i) = ‖‖pi − p�i

‖‖ , where p′
i
 is 

the next step position of agent i. Our purpose is to minimize 
the overall moving cost of the agent team, so for the robot 
movement strategy we display as

where P = {p�
1
, ..., p�

N
} . The overall cooperative source seek-

ing method with applying the minimal moving cost control 
strategy could be seen in Algorithm 1.

(9)ak =
r × (1 + s)�

1

�

∑k

j=k−�+1
1

n

���ĝj
���

(10)L(P) = argmin
p� i∈P

N∑

i

‖‖pi − p�i
‖‖

Fig. 4  An illustration of proposed cooperative source seeking 
method. It mainly contains the following five steps: (1) Perform spa-
tial cooperative gratitude estimation at time k − 1 . (2) Calculate the 
step length using Eq. (10). (3) Further obtain the estimated target 
center position at time k using Eq. (8). (4) Obtain the preliminary 
gradient estimation at position c

k− . (5) Finally calculate the gradient 
estimation at time k 
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4  Theoretical Analysis

In this section, we detailed the importance of the proposed 
cooperative source-seeking method in theory. We firstly 
derived the Carmér-Rao Lower Bound (CRLB) [30] of gra-
dient estimation error caused by the spatial–temporal fusion 
method. The lower bound of the proposed theoretical estima-
tion accuracy is obtained. Then, the stability of the proposed 
algorithm is analyzed by Lyapunov inference [31].

4.1  Carmér‑Rao Lower Bound

CRLB defines the theoretical lower limit of the variance of 
any unbiased estimator, which can be used as a benchmark 
for judgment and estimation methods. In this part, we analyze 
the CRLB of the variance of the gradient in the presence of 
control error.

Consider that each agent is able to measure the signal 
strength at its own position by z(pi) but the measurements are 
corrupted by white zero-mean Gaussian noise � ∼ N(0, �2) . 
Due to the noisy measurements, the weighted gradient estima-
tion of the overall agent team should be bounded by:

where J(z(c)) is the Fisher information matrix [30]. Then, 
with considering of Eq. (4), the denoted gradient estimation 
could be expressed as follows:

(11)E
{
(z(c) − z(c))2

}
≥ CRLB = tr

{
J−1(z(c))

}

(12)2

NR2

N∑

i=1

(z(c) + �)(pi − c) = ∇z(c) + o(c) + o(R)

where o(c) is the gradient estimation disturbance caused 
by the control error. Substitute Eqs. (4) into (12), we could 
obtain:

Thus, o(c) ∼ N(0, 4|z(c)|
2�2

R4
) . Each estimated gradi-

ent ∇̂z(c) is an estimator with Gaussian noise, namely 
∇̂z(c) ∈ N(∇z(c),

4|z(c)|2𝜎2

R4
) . Then, the distribution function 

of ∇̂z(c) is f
(
∇̂z(c)

)
 , and the Fisher information matrix func-

tion [30] could be denoted as:

Finally, the CRLB [30] of the weighted gradient estimation 
of the overall agent team could be derived as:

The derived CRLB is proportional to the signal measure-
ment noise variance and inversely proportional to the fourth 
power of the radius. Thus, given certain measurement con-
ditions, the greater the radius, the smaller the influence of 
noise in the gradient approximation. However, as proven in 
Theorem 1, the error in the gradient approximation vanishes 
when the radius tends to zero.

For example, we set the signal strength z(p) typically as 
− 50 dB and the radius R of the symmetric formation to 1 
m. Then, the CRLB estimation along with the noise standard 
deviation of � is displayed in Fig. 5a. CRLB increases dispers-
edly with the increase of noise error, which indicates that the 
greater the measurement noise, the greater the error of the gra-
dient estimation. On the other hand, we set the signal strength 
value z(p) typically as − 50 dB, and the standard deviation of 
signal measurement � of the symmetric formation to 0.3 m. 
Then, the CRLB estimation along with the symmetrical for-
mation radius R is displayed in Fig. 5b. The CRLB gradually 
decreases and slowly converges. However, it is not reasonable 
that R unrestrictedly increases in practice applications. Thus, 
we need to balance the value of radius R and improve the accu-
racy of gradient estimation by optimizing other parameters.

Consequently, we conclude that the radius of the robot team 
formation has an important role in gradient estimation and 
noise attenuation. How the formation radius affects the gradi-
ent estimation algorithm will be verified in the later numerical 
experiments.

4.2  Lyapunov Stability

We now prove the Lyapunov stability of the virtual 
structure-based method, which can prove that the method 

(13)o(c) =
2z(c)

R2
�

(14)J(pi) = −E

[
� ln f

�∇z(c)

]2
= −

R4

4|z(c)|2�2

(15)Var
[
∇̂z(c) − ∇z(c)

]
≥ tr{J−1(pi)} =

4|z(c)|2𝜎2

R4
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proposed in this paper could ensure the robot team finally 
moves to the exact signal source in a scene where there is 
only one signal source without obstacles. We define the 
control law of the proposed source seeking method as:

where ck is the center of agents’ formation in the k-th itera-
tion, and u is the control signal, it can be expressed as the 
following equation:

where ak is non-negative.

Theorem 2 Assume that the signal strength is continuously 
derivable and satisfy the following property:

which shows that it has a maximum value at ps , and the 
signal strength decreases as the Euclidean distance from ps 
increases. Under the control law of (16), the point of ps is an 
asymptotically stable equilibrium in the cooperative source 
seeking method.

Proof We construct the Lyapunov function [31] as follow:

which is zero at ck = ps and positive otherwise. The time 
derivative of (19) is:

(16)ċk = �

(17)

� = ak
1

2NR2
×

(
N∑

i=1

z(pi)(pi − c) +

N∑

i=1

z(p−
i
)(p−

i
− c)

)

(18)‖‖c1 − ps
‖‖2 < ‖‖c2 − ps

‖‖2 ⇒ z(c1) > z(c2)

(19)V(ck) = z(ps) − z(ck)

Substitute Eq. (17) into the above equation to get:

where the gradient ∇z(ck) can be expressed as follow:

where � is a coefficient related to the gradient size. It is obvi-
ous that ∇z(ck) is a vector from ck to ps . According to our 
definition of the field strength function z(c), the coefficient 
� satisfies the following conditions:

By substituting the definition of ∇z(ck) into V̇(ck) , we get:

(20)V̇(ck) = −∇z(ck)
Tċk

(21)

V̇(ck) = − ∇z(ck)
Tak

1

2NR2
×

(
N∑

i=1

z(pi)(pi − c) +

N∑

i=1

z(p−
i
)(p−

i
− c)

)

(22)∇z(ck) = �
ck − ps

‖‖ck − ps
‖‖2

(23)� ≥ 0

(24)

V̇(ck) = −ak
𝜇

‖‖ck − ps
‖‖2

1

NR2
×

(
N∑

i=1

z(pi)(ck − ps)
T(pi − c)+

N∑

i=1

z(p−
i
)(ck − ps)

T
(p−

i
− c)

)
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Fig. 5  Spatial performance evaluation based on the analysis of CRLB. a CRLB changing with standard deviation � of the control error. b CRLB 
changing with the radius R of the symmetrical formation
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where ak is positive, �

‖ck−ps‖2

 is non-negative, 1

NR2
 is non-

negative. To determine the lower bound of V̇(ck) , we intro-
duce a set that changes over time:

Thus, the cumulative sum in V̇(ck) can be expressed in the 
following form:

It is easy to know that if ck ≠ ps , then those agents in M 
are all closer to the source ps than those agents not in M 
(for example, M = {p1, p2, p1−, p2−} in Fig. 4). Because the 
signal strength measured by the robot closer to ps is greater, 
for all pk and pm:

then we get:

If we apply the above inequality to the sum of the above 
equation, we get:

and

We assume that M is not an empty set (that is always true 
when N>2), and that the sum in M is bounded by:

The agents are uniformly distributed in a circular formation, 

so 
N∑
k=1

(pi − c) = 0 . ak > 0 and �

‖ck−ps‖2

 is non-negative. From 

(25)M = {pi ∶ (ck − ps)
T
(pi − c) > 0}

(26)

V̇(ck) = − ak
𝜇

‖‖ck − ps
‖‖2

1

NR2
×

(
∑

pi∈M

z(pi)(ck − ps)
T(pi − c)+

∑

pi∉M

z(pi)(ck − ps)
T
(pi − c)

)

(27)pk ∈ M, pm ∉ M,∃𝛿 > 0

(28)z(pk) > 𝛿 > z(pm)

(29)

pi ∈ M ⇒

z(pi)
���

>𝛿

(ck − ps)
T
(pi − c)

�������������������
>0

> 𝛿(ck − ps)
T
(pi − c)

(30)

pi ∉ M ⇒

z(pi)
���

<𝛿

(ck − ps)
T
(pi − c)

�������������������
≤0

≥ 𝛿(ck − ps)
T
(pi − c)

(31)

∑

pi∈M

z(pi)(ck − ps)
T(pi − c) +

∑

pi∉M

z(pi)(ck − ps)
T(pi − c)

> 𝛿(ck − ps)
T

N∑

k=1

(pi − c)

the above conditions we get: when M is not an empty set, 
V̇(ck) < 0 is true for all ck ≠ ps . According to the LaSalle’s 
invariant set principle [31], the point ps is asymptotically 
stable under the control law (13).

  ◻

With the above derivation of the Lyapunov equation, it is 
proved that our proposed method can converge to the opti-
mal solution.

5  Numerical Simulation and Discussion

To verify the effectiveness, we compared our proposed 
method with two state-of-the-arts [21, 28] in the numerical 
experiments. The method in [21] has only one robot for the 
source seeking task, while the method in [28] presented a 
circular team of four agents for source seeking. Besides, two 
scenarios are set up in this paper, one is a single-source sce-
nario, and the other is a local optimal dual-source scenario.

5.1  Experiment Setup

A scalar signal source simulates a working space W with the 
coordinates of signal source ps = (5m, 25m) . The collective 
information, as well as signal strength in this experiment, 
received by each agent in the working space, is given by the 
following equations. The overall signal source model used 
in the experiment is denoted as follows [28]:

where p is the current position of the robot, ps is the posi-
tion of the signal source, and N is the signal noise. There-
into, N =

√
�2 + �2 . � and � both have normal distributions 

respectively, where � ∼ N(� cos �, �2) , � ∼ N(� sin �, �2) , 
and � is the standard deviation, � and � both influence the 
mean of the distribution. The initial position of the robot 
team center is pinit = (25m, 5m) . This article conducts verifi-
cation and analysis under the above experimental conditions. 
In the following part, we compare the method proposed in 
this article with state-of-the-arts in [21] and [28]. Numerical 
simulations confirm the efficiency of the scheme put forth.

5.2  Typical Experimental Results in Single Source

We chose the first experimental scenario, the signal field 
used is given by Eq. (32). For the noise term N, we set the 
parameters as �=2 , �= �

3
 , �=1 . These parameters are used 

to generate the experimental signal field. Two compara-
tive methods and our own proposed one are performed 100 
times in the same experimental scenario. When the distance 

(32)z(p) = −20.05 − 20log10
‖‖p − ps

‖‖ − N
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between the source and the agent’s center approaches 0, 
we take it as the agents in formation successfully find the 
source. The speed of finding signal sources is one of the 
important indicators to measure the algorithm’s efficiency. 
The fewer iteration steps that the agents take to reach the 
signal source, the faster the distance converges to zero and 
the higher the algorithm’s efficiency.

A typical numerical simulation is displayed in Fig. 6, 
from which we could conclude that the two comparative 
methods are more easily affected by signal noises, as their 
trajectories (green and magenta ones) fluctuated more heav-
ily and are more tortuous. In contrast, the trajectory curve 
obtained by the method described in this paper (the red one) 
is smoother and simpler, which implicit that our approach is 
more efficient and robust to various changing signals. The 
method proposed in this paper reduces the interference of 
noise on the gradient calculation. It makes the trajectory 
more consistent with the direction of the gradient increase 
in the signal field. This shows that our proposed virtual 
structure-based method has better stability and anti-noise 
characteristics.

Furthermore, the averages of 100 experimental results 
are taken as the final experimental output. The variance of 
calculated total movement distances is drawn as error bars in 
Fig. 7, demonstrating the detailed tendency of distance vari-
ance along with the iteration steps. Fig. 7 shows the distance 
between the current agent formation center and the signal 
source, along with the number of iteration steps. It can be 
seen that our proposed spatial–temporal cooperative source-
seeking method convergences faster than comparative 

methods. The circular formation method that is superior to 
the [28] is also far superior to the random approximation 
method of [21], indicating that the cooperative estimation 
among agents outperforms independent work and could 
solve the source seeking problem more efficiently. In addi-
tion, the numerical results are demonstrated in Table 1.

5.3  Cumulative Distances with Noise Variance

The cumulative distances represent the total movement 
distances made by each agent, traveling from the starting 
position to the signal source. The smaller the cumulative 
distances, the source seeking method is more efficient.

The control variable of this experiment is the noise var-
iance of the signal field, that is, the noise term N in Eq. 
(32). We vary the noise variance of the signal field and 
then compare the differences of the cumulative distances of 
the agents calculated by the three different source-seeking 
methods. Let �={1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5} . In differ-
ent signal fields generated by different noise parameters � , 
we performed three algorithms 100 times in various signal 
fields and then recorded the averages and variances of each 
experiment.

Figure 8 shows the robot’s cumulative distances of all 
three methods as the noise variance of � changes. The 

Fig. 6  Comparison of trajectories of proposed method and state-of-
the-arts

Table 1  The distance between 
formated team center and the 
signal source changes with 
the iteration steps with use of 
different methods

Distance to the source/m

Iteration steps 1 6 11 16 21 26 31 36 41

Method in [28] 28.28 22.99 18.01 11.07 3.45 0.21 0 0 0
Method in [21] 28.28 23.79 19.90 15.21 10.09 5.47 2.61 0.72 0.05
Proposed method 28.28 22.72 15.98 7.03 0.73 0 0 0 0

Fig. 7  The distance from the center of the robot to the source varies 
with the number of iteration steps
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variance of 100 experimental results gives the error bars in 
the figure. It can be seen from Fig. 8 that our proposed spa-
tial–temporal cooperative source seeking method has signifi-
cantly smaller cumulative distances than those of [21], and 
[28] under the same noise condition. The proposed coopera-
tive source seeking method enables the agents to find the 
signal source with a shorter movement distance and higher 
search efficiency. Quantitatively, we display the results of 
the numerical experiment in Table 2.

On the other hand, as the noise variance � increases, the 
curves of the three methods all have an upward tendency. 
The growth rate of the proposed spatial–temporal coopera-
tive source seeking method is significantly lower than those 
of other comparative algorithms, and the gap with the other 
two is getting wider and wider. It indicates that the proposed 
method is significantly more robust to noise interference 
than the methods in [21] and [28]. In addition, the ampli-
tude of the error bars of the proposed method is also smaller, 
which means more stable and robust to noise characteristics.

5.4  Cumulative Distances with Various R

As we declared in Sect. 4.1, the formation radius R has an 
important role in the gradient estimation and the noise atten-
uation. The gradient estimation variance is inversely propor-
tional to the radius squared; thus, the greater the radius, the 
smaller the influence of noise in the gradient approximation. 

As proven in Theorem 1, the error in the gradient approxi-
mation vanishes when the formation radius R tends to zero. 
However, larger R can also contribute to the information 
gathering and finally lead to a smaller accumulative distance 
of the overall source-seeking process. We carried out numer-
ical simulation experiments for the source-seeking process 
with various formation radius to further quantitatively evalu-
ate the influence of formation radius on the accumulative 
distance.

From Fig. 9 we can conclude that with a larger radius, the 
formated agents could achieve the source with smaller accu-
mulative distances and smaller variance with the use of our 
proposed spatial–temporal method. Our explanation for this 
is that a larger radius introduces more spatial information to 
the algorithm, and in the meantime, improves the stability 
of the system as a whole. However, the formation radius is 
not as larger as better, owing to communication and monitor-
ing area constraints. Everything is taken into account. The 
radius chosen as 1 to 2 m is generally appropriate based on 
our close attempts.

5.5  Typical Experimental Results in Multiple 
Sources

We added a new signal source in the multiple sources 
scenario whose signal strength is half of the original 
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Table 2  The cumulative 
distance changes with various 
variances with use of different 
methods

Cumulative distances/m

Noise variance/m2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Method in [28] 49.67 56.16 59.84 68.09 76.43 81.77 87.90 100.49 109.53
Method in [21] 36.22 46.68 57.01 77.75 78.46 102.10 136.07 169.29 177.22
Proposed method 31.81 36.07 40.03 44.67 51.03 55.61 53.80 66.68 73.20
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signal source. Its position p′s is between the robot’s start-
ing position and the first signal source position ps , and 
p�s = (20m, 20m) , we will conduct experiments in this sce-
nario and show typical experimental results.

In the scenario where two signal sources exist, we con-
ducted 100 experiments. In each experiment, the robot team 
moved to the vicinity of the second signal source p′s . We 
drew the trajectory of the typical robot team in the experi-
ment in Fig. 10. Then, we can see that the robot team has 
found the location of the second signal source p′s , which 
shows that our proposed method can find the local optimal 
value according to the gradient of the signal field. In multiple 
sources, the agents converge to a local maximum depending 
on their initial conditions. For each simulation, the initial 
conditions are different to show the local stability properties 
of our approach. In both conditions, the agents converge to 
a local maximum depending on their initial conditions. As 
shown in Fig. 10, the convergence rate also depends on the 
initial conditions and the shape of the signal measured.

6  Conclusions

This paper proposed a spatial–temporal method for multi-
robot cooperative sources seeking to fuse spatial and tem-
poral information in the scalar field. With the derivation 
of the CRLB and Lyapunov equation, it is proved that our 
proposed method can converge to the optimal solution and 
be bounded by certain error limits. Compared with state-
of-the-art multi-robot collaborative methods, our proposed 
method enables the robots to find signal sources with smaller 
iteration steps and cumulative distances, effectively reducing 
task overhead and improving efficiency. Our future work 
will focus on reducing the formation error of the robot team, 

(33)
z(p) = −20.05 − 20log10

‖‖p − ps
‖‖ − 10log10

‖‖p − p�s
‖‖ − N

which may provide a more accurate gradient estimation with 
circular or arbitrary formation for better facilitation of prac-
tical applications.
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