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Constrained Gaussian Condensation Filter for
Cooperative Target Tracking
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Abstract—Real-time high-precision navigation has many appli-
cations, such as pedestrian navigation, emergency rescue, and
vehicle networks. In practice, the measurement models are often
nonlinear, and sequential Bayesian filters, such as Kalman and
particle filter, suffer from accumulative errors, which cannot pro-
vide long-time high-precision services for localization. To solve
arbitrary noise distribution, this article proposes a Gaussian
condensation filter (GCF) algorithm to achieve high-precision
localization in a non-Gaussian noise environment. To this end, we
proposed an error-ellipse resampling (EER)-based GCF (EER-
GCF), which establishes error ellipses with different confidence
probabilities and implements a resampling algorithm based on
the sampling points’ geometrical positions. Furthermore, a coop-
erative EER-based GCF (CEER-GCF) is proposed to enhance
information fusion in the multitarget network. This study
accomplishes cooperative tracking based on spatial–temporal
constraints to enhance error correction. The experimental results
show that CEER-GCF can effectively eliminate the accumulative
error and optimize state estimation, which outperforms state of
the arts, such as unscented Kalman filter and particle filter.

Index Terms—Cooperative tracking, error-ellipse resampling
(EER), Gaussian mixture distribution, location aware, spatial–
temporal constraints.

I. INTRODUCTION

NOWADAYS, real-time and high-accuracy localization has
been considered for many civil and military applica-

tions, such as pedestrian navigation [1], emergency rescues [2],
and intelligent vehicles [3]. The global navigation satellite
system (GNSS) is sufficient to provide qualified accuracy
positioning support for substantial outdoor positioning appli-
cations [3]. However, in some harsh environments, including
densely constructed urban areas, underground, forests, and
canyons, there is a high probability of GNSS signals being
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blocked or lost, which makes GNSS scarcely meet the practi-
cal demands. Wireless positioning techniques, such as ultra
wideband (UWB) based on time-of-arrival (TOA) distance
measurements [4], are widely adopted in areas that GNSS
cannot cover. However, in most conditions, it requires the
predeployment of base stations [5]. The inertial navigation
system (INS) that utilizes an inertial measurement unit (IMU)
is self-contained and could infer its position from sequential
data without any additional infrastructure [6]. Unfortunately,
INS is constrained to a large extent by the cumulative error
problem [7], so that it cannot provide a long-term high-
precision estimation.

Correspondingly, existing methods generally consider
fusion and cooperative methods [8], [9]. Zihajehzadeh and
Park [8] put forward a method with IMU/TOA fusion, which
combined the characteristics of instantaneous high-precision
measurement of IMU and nonaccumulative error of TOA.
However, external beacons are still required, which is unsuit-
able for extensive area tracking or collaborative scenarios.
Xu et al. [9] also provided a reliable implementation with
IMU/TOA fusion for human motion tracking. They realize
long-term and large-distance requirements by mounting sev-
eral sensing nodes onto human joints. Nevertheless, it is not
easy to generalize to general target tracking applications due
to its strict model. Filtering methods are also widely consid-
ered to solve cooperative fusion problems. Kalman-like filters
have been widely applied for many important problems. The
Kalman filter [4], [10] is the most widely adopted Bayesian
estimator to minimize the variance of the estimation error. It is
a recursive algorithm that uses a model of dynamics and sen-
sor measurements to obtain an estimation of the state vector.
However, it strictly requires the system model to be linear
and assumes the noise to be Gaussian white noise, which
greatly limits its application in complex systems and prac-
tical environments. Extended Kalman filter (EKF) [11], [12]
is considered with linearizing the nonlinear state model, but it
is only applicable to weak linear systems. However, due to the
selection of linearization points and the abandonment of higher
order terms, there will be an inevitable linearization error. To
solve this, You et al. [13] proposed an unscented Kalman filter
(UKF) to realize UWB and IMU fusion in indoor localization
of quad-rotors. It can approximate the posterior distribution
based on sampling points, but the non-Gaussian noise problem
remains unsolved.

Most of the existing IMU/TOA fusion literature mainly
considered the ambient noise as Gaussian, such as [7]
and [14]–[17]. However, in certain conditions, such as
suburban and urban environments, due to manufactured
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environmental factors, different sensor measurements often
show various distribution characteristics, most of which are
usually non-Gaussian. TOA distance ranging is easily influ-
enced by the multipath and nonline of sight (NLOS) factors.
Typically, ranging errors can be modeled as a Gaussian dis-
tribution in the line of sight (LOS) scenarios [18]. In the
NLOS scenarios, ranging errors can be modeled as Gaussian
distribution [7], log normal [19], or other non-Gaussian distri-
butions [20], [21]. Besides, IMU measurement noise is often
non-Gaussian and random with significant impulse charac-
teristics [22]. α-stable distribution [20], [23] and Student-t
distribution [24]–[26] are often considered in noise modeling
of inertial sensors, and it is generally believed that IMU’s
noise is non-Gaussian and exhibits different characteristics in
various environments.

Therefore, the Gaussian assumption, to some extent, does
not conform to the real-world noise situation. There are still
challenges in realizing a fusion positioning solution for arbi-
trary noise distribution. Wang et al. [15] proposed the particle
filter (PF) based on Monte Carlo sampling, which uses the
average value of a set of weighted particles to estimate the
mean and covariance of the state, and approximates the pos-
terior distribution in the region containing the significance
probability. However, in the process of resampling, it faces
the problem of particle degradation and depletion [27]. In
addition, for high-dimensional problems, high complexity is
usually inevitable [28].

The cooperative optimization technique is considered to
suppress the impact of accumulative errors in autonomous nav-
igation and positioning. In self-organizing and highly dynamic
scenarios, the cooperative technique can fuse the perception
information collected by individuals to realize the information
gain between target nodes. Specifically, a target node obtains
location from an inertial measurement device in a cooperative
network and generates autonomous ranging information with
others. Based on this mutual information, they coordinate with
each other to complete an optimized estimation of target posi-
tioning [29]. With inertial measurement sensors and ranging
sensors embedded, the mobile nodes can realize multitarget
cooperative positioning based on the inertial measurement and
spatial distance measurement [7]. When we consider static
space optimization, we pay attention to the influence of space
measurement at the current moment on the state estimation.
The state constraints can be obtained based on the distance
measurement among the nodes. Nilsson et al. [30] proposed
a cooperative positioning technique using spatial location
information to achieve the optimization of the multitarget loca-
tion tracking. However, these distance fusion methods require
external base stations, and the wireless signal is prone to
NLOS occlusion, which may cause large errors.

In this perspective, we show how to include constraints
in the part of the Gaussian condensation filter. With error-
ellipse and distance constraints applied to the estimation
process of the temporal filter, the estimated state is closer
to the real position. In terms of uncertainty quantification,
Cramér–Rao lower bound (CRLB) is a well-adopted tool in
the existing literature to quantify the measurement uncer-
tainty [7], [31]. In this current study, we detailed the derivation

Fig. 1. Example trajectory of walking target nodes: step size lk and heading
angle θk can be obtained by an IMU, and dk,ij can be obtained by range
measurements with respect to other nodes.

of constrained sequential bound of cooperative networks.
Moreover, to evaluate the performance of different meth-
ods, we also derived the posterior CRLB (PCRLB) for this
problem. Simulation results confirm these bounds. In sum-
mary, the main contributions of this article are threefold.

1) A Gaussian condensation filter (GCF) method is
proposed to effectively handle the arbitrary noise distri-
bution, aiming at the non-Gaussian noise problem of the
target tracking. We adopted a Gaussian mixture model to
approximate the true posterior probability distribution.

2) To conquer the cumulative error problem of target
tracking, we utilized the error-ellipse resampling (EER)
method to realize resampling based on the sample
points’ geometric positions. A 3σ − and − σ uncer-
tainty discriminate criterion is established to construct
the inner and outer error-ellipses centered at IMU’s ini-
tial estimation. With duplicating and deleting the sample
points, the impact of accumulative errors is effectively
suppressed.

3) Furthermore, a spatial-constrained GCF is proposed
to improve the information fusion in the cooperative
network effectively. By using the mutual information
constraints between target nodes, the tracking positions
could be cooperatively optimized. Thereby, the state
estimation of the target node is improved.

The remainder of this article is organized as follows.
Section II gives the symbolic explanation, related definitions,
and problem description. Section III proposes a multitar-
get cooperative GCF (CGCF) algorithm, which describes the
EER algorithm and the process of cooperative constraint
optimization. Section IV analyzes the theoretical performance
of cooperative target tracking. Section V details the experiment
results. Finally, conclusion is drawn in Section VI.

II. PROBLEM DEFINITION

In this section, we investigate the filtering problem for nav-
igation in harsh environments as a case study. We consider a
two-dimensional scenario in which a target node could obtain
internode distance ranges to the others and intranode inertial
measurements from IMU. In the following, we, respectively,
describe the dynamic and measurement model.

A. Dynamic Model

Fig. 1 illustrates the random walk model [15] of target
nodes. Define a set Ω = {1, 2, . . . , M} with M mobile targets,

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on January 25,2022 at 07:41:33 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: CONSTRAINED GAUSSIAN CONDENSATION FILTER FOR COOPERATIVE TARGET TRACKING 1863

whose position is unknown. The state vector Xk,i ∈ R
2 of the

ith moving target at time k is indicated, where the measured
coordinate vector Ak,i = [xk,i, yk,i]T and the velocity vector
is Vk,i. Therefore, the state parameter Xk at time k can be
expressed as

Xk =
[
Ak,1:M, Vk,1:M

]T
. (1)

Generally, the random walk model can be modeled as a
Gaussian Markov process. The state Xk of the ith moving tar-
get at time k transfers to the state Xk+1 at time k + 1. The
state transition equation is expressed as

Xk+1,i =
⎡

⎣
xk+1,i

yk+1,i

Vk+1,i

⎤

⎦ = F

⎡

⎣
xk,i

yk,i

Vk,i

⎤

⎦+ Gυk (2)

where

F =
⎡

⎣
1 0 �t cos θ̂k,i

0 1 �t sin θ̂k,i

0 0 1

⎤

⎦ and G = �t

⎡

⎣
�t/2 cos θ̂k,i

�t/2 sin θ̂k,i

1

⎤

⎦

represent state transition matrices. The variable �t is the sam-
pling interval, and θk,i is the horizontal angle of the ith target
node at time k. Commonly, a dynamic error is modeled as a
zero-mean Gaussian variable [32]. υk is the dynamic noise,
which obeys Gaussian distribution with a mean of 0 and a
covariance of γ 2, namely, υk ∼ N(0, γ 2). Thus, the dynamic
model for the state vector in navigation can be considered as
linear and Gaussian without loss of generality.

B. Measurement Model

In localization and navigation problems, parameters of the
random walk model are generally composed of step and angle
information. With the accelerometer measurements of the IMU
sensor, the ith target node’s step size estimate is

l̂k,i = lk,i + η1,k (3)

where lk,i is the actual distance displacement between the posi-
tions of time k and k + 1, i.e., step size, which could be
represented as

lk,i =
√(

xk+1,i − xk,i
)2 + (yk+1,i − yk,i

)2 (4)

and η1,k is the step error and could fit for the arbitrary
distribution, namely, Gaussian and non-Gaussian in various
conditions. Therefore, the vector l̂ = [l̂k,1, l̂k,2, . . . , l̂k,M]T

shows the step size information at time k. With the gyro-
scope measurements of the IMU sensor, the ith target node’s
horizontal angle estimate is

θ̂k,i = θk,i + η2,k (5)

where θk,i is the actual horizontal angle, i.e.,

θk,i = arctan
yk+1,i − yk,i

xk+1,i − xk,i
(6)

and ηk,i is the horizontal angle error and obeys the arbitrary
distribution, namely, Gaussian and non-Gaussian in various
conditions. Therefore, the vector θ̂k = [θ̂k,1, θ̂k,2, . . . , θ̂k,M]T

Fig. 2. IMU consists of the accelerometer and the gyroscope, and both will
obtain the measurement at each moment. These values are used as the initial
input for GCF. The UWB sensor provides the essential distance information,
which ensures the procedure of distance optimization for constrained EER in
the cooperative stage.

shows the horizontal angle at time k. The distance between
the ith and the jth target node is estimated as

d̂k,ij = dk,ij + η3,k (7)

where dk,ij is the actual distance at time k, i.e.,

dk,ij =
√(

xk,i − xk,j
)2 + (yk,i − yk,j

)2 (8)

and η3,k is the distance error and obeys the arbitrary distribu-
tion, namely Gaussian and non-Gaussian in various conditions.
Therefore, the vector Sk = {d̂k,ij | j ∈ {1, . . . , M} \ {i}} shows
the distance between the target node and others at time k.
For simplicity, we define Zk = [l̂k, θ̂k] as the inertial mea-
surements of M target nodes. Similarly, Sk is for the distance
ranging measurements.

III. COOPERATIVE GAUSSIAN CONDENSATION FILTER

This section first details the GCF to handle non-Gaussian
noise in the measurement model under nonideal conditions.
On this basis, we optimize the sampling points with the use
of their geometric position. Then, we introduce an EER-based
GCF (EER-GCF) algorithm to accomplish the temporal state
estimation of the target node. After that, we introduce con-
straint optimization based on spatial distance. Finally, a CGCF
is established to realize multitarget cooperation with the con-
sideration of spatial–temporal constraints. Fig. 2 describes
the flow of the cooperative-constrained Gaussian condensation
filter.

A. Gaussian Condensation Filter

The Gaussian condensation filter [33] recursively gener-
ates the posterior probability density function (PDF) of the
target state. Fig. 3 illustrates the key ideas of GCF. In the
prediction step, the prior PDF can be calculated from the pos-
terior distribution of the previous moment. In the update step,

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on January 25,2022 at 07:41:33 UTC from IEEE Xplore.  Restrictions apply. 



1864 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 3, FEBRUARY 1, 2022

Fig. 3. Illustration of the GCF in three steps: 1) prediction; 2) update; and
3) Gaussian condensation.

the posterior PDF is updated by a new set of measured values.
In the Gaussian condensation step, due to the nonlinearity of
the measurement model, a posteriori PDF is approximated
as the Gaussian mixture model. Then, the estimated state is
projected back into the Gaussian mixture model.

1) Prediction: It is assumed that the state transition process
obeys the first-order Markov model, namely, p(Xk|X1:k−1) =
p(Xk|Xk−1). At time k, a priori probability distribution
p(Xk|Z1:k−1) can be calculated by the integration of the prod-
uct of p(Xk|Xk−1) with p(Xk−1|Z1:k−1). However, the integral
is extremely complicated in non-Gaussian systems. It can
only be efficiently solved when the involved functions are
Gaussian or sums of deltas, which are the intrinsic prop-
erties of Kalman-like and PFs. Moreover, according to the
central limit theorem, any statistical distribution could be
approximated by a Gaussian mixture, whose number of com-
ponents is much smaller than that of using a mixture of
deltas [34]. As the dynamic models are Gaussian and linear
with a wide generality, the prediction step could be easily com-
puted in a closed form. Therefore, in this study, we consider
that the state equation is linear but the posterior distribu-
tion is a Gaussian mixture model, namely, p̂(Xk−1|Z1:k−1) =∑m

i=1 αiN (Xk−1;μ(i)
k−1|k−1, Q(i)

k−1|k−1). Then, the prediction
step is expressed as

p̃(Xk|Z1:k−1) =
m∑

i=1

αiN
(

Xk;μ(i)
k|k−1, Q(i)

k|k−1

)
(9)

where μ
(i)
k|k−1 = Fkμ

(i)
k−1|k−1 and Q(i)

k|k−1 = FkQ(i)
k−1|k−1FT

k +γ 2.
m is number of Gaussian kernels and γ 2 is the covariance of
dynamic noise υk.

2) Update: A posteriori PDF is updated by measurements
Zk at time k. Since the measurement model determined by the
likelihood function p(Zk|Xk) is nonlinear and non-Gaussian,
the updated a posteriori distribution p(Xk|Z1:k) will not fall
in the range of the Gaussian mixture model, as indicated in
Fig. 3. Based on (9), the update step is expressed as

p̃(Xk|Z1:k) ∝
m∑

i=1

αiN
(

Xk;μ(i)
k|k−1, Q(i)

k|k−1

)
p(Zk|Xk). (10)

3) Gaussian Condensation: For general nonlinear/non-
Gaussian filters, the number of sufficient statistics characteriz-
ing the true posterior distribution increases without bound [34].

Fig. 4. PDF of a mixture of one beta and one t-student distribution, as
well as the fitting results with 2000 samples and two kinds of approximation,
respectively, one and two Gaussian kernel fitting.

To avoid this situation, we intend to obtain a closed-form
solution with the resort to approximate the posterior distribu-
tion into a Gaussian mixture model. For a given distribution p,
an optimal Gaussian mixture distribution q could be derived
by minimizing the Kullback–Leibler (KL)-divergence. Then,
the following theorem could be used.

Theorem 1: Let p(X) be the PDF of a random vector
X ∈ R

n and λ = (α1, . . . , αm, μ1, . . . , μm, �1, . . . , �m) be
the parameters characterizing a mixture of m Gaussian distri-
butions, namely, q(X; λ) = ∑m

i=1 αiN (X;μi, �i). If �(λ) is
the KL-divergence between p(X) and q(X; λ), namely

�(λ) = DKL(p(X), q(X; λ)) = Ep

{
log

p

q

}
(11)

then λ∗ = (α∗1 , . . . , α∗m, μ∗1, . . . , μ∗m, �∗1 , . . . , �∗m) is a station-
ary point of �, where

qi(X; λ) = αiN (X;μi, �i) (12)

αi = Ep

{
qi(X; λ)

q(X; λ)

}
(13)

μi =
Ep

{
qi(X;λ)
q(X;λ)

X
}

Ep

{
qi(X;λ)
q(X;λ)

} (14)

�i =
Ep

{
qi(X;λ)
q(X;λ)

(X − μi)(X − μi)
T
}

Ep

{
qi(X;λ)
q(X;λ)

} (15)

and Ep(·) indicates the expectation over a random vector p.
Proof: See the Appendix.

To summarize, given by a PDF p(X), an approx-
imate Gaussian mixture model could be inferred by
the following steps. Given an initial solution λ0 =
(α

(0)
1 , . . . , α

(0)
m , μ

(0)
1 , . . . , μ

(0)
m , �

(0)
1 , . . . , �

(0)
m ) to parameter-

ize the Gaussian mixture p̂(Xk|Z1:k). Then, repeat the iteration
λ(j+1) = λ(j) until convergence. Fig. 4 details how we can
approximate a complex statistical distribution to a Gaussian
mixture one. A detailed description of GCF is shown in
Algorithm 1.
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Algorithm 1 GCF
Input: p̃k ← the posterior probability distribution
Output: {λk, p̂k} ← Gaussian mixture distribution

(i) Choose a family of mixtures of Gaussian and an initial solution
q(X, λ0) =∑m

i=1 α
(0)
i N (X, μ

(0)
i , �

(0)
i )

λ0 = (α
(0)
1 , · · · , α(0)

m , μ
(0)
1 , · · · , μ(0)

m , �
(0)
1 , · · · , �(0)

m )
(ii) �(λ) repeat until convergence the iteration
while λ(j+1) = λ(j) do

for i← 1, m do

f (X) = α
(l)
i N (X;μ(l)

i ,�
(l)
i )p̃k

∑m
i=1 α

(l)
i N (X;μ(l)

i ,�
(l)
i )

� formula(13)

α
(l+1)
i = f (X)

μ
(l+1)
i = sum(Xf (X))

C � formula(14)

�
(l+1)
i = sum((X−μ

(l+1)
i )(X−μ

(l+1)
i )T f (X))

C
end for

end while
(iii) Approximate p̃k as
p̂k =

∑m
i=1 α

(l+1)
i N (X;μ(l+1)

i , �
(l+1)
i )

B. Error-Ellipse Resampling

We use a GCF for sequential Bayesian estimation in harsh
environments, which is used to solve the non-Gaussian noise
problem in a practical measurement model. However, based
on the Bayesian recursive inference criterion, we can con-
clude that if a priori estimation is biased, the subsequent state
estimation would also be affected. Therefore, we further ana-
lyze the geometric factors affecting the target node positioning
accuracy, and then establish error-ellipse optimization. Finally,
the EER algorithm is described as follows, which mainly
realizes the rescreening of sampling points.

The error ellipse is often used in accuracy evaluation [35].
Let s indicate the uncertainty of state estimation, and then if
a confidence probability β is given in advance, a confidence
interval (s1, s2) could be found to satisfy

P(s1 < s < s2) = β. (16)

In this article, the two-dimensional covariance matrix of N
sampling points at time k is expressed as

R =
[

cov(x, x) cov(x, y)
cov(y, x) cov(y, y)

]
. (17)

If x is positively related to y, vice versa, then cov(x, y) =
cov(y, x). Therefore, the covariance matrix is always a sym-
metric one. When the center of error ellipse is not at the origin
point, the equation could be expressed as

s =
(
x− xp

)2

τ1
+
(
y− yp

)2

τ2
(18)

where τ1 and τ2 are, respectively, the largest and small-
est eigenvector of the covariance matrix R. (xp, yp) is the
estimated center position, and s is the scale of the error
ellipse [15]. When the ellipse is tilted, the angle ε between
the error-ellipse’s major axis and the x-axis is expressed as

ε = arctan
τ1(y)

τ1(x)
(19)

Furthermore, assume the rotated coordinates are (x′, y′), and
then, the error-ellipse constraint represented by the rotated

(a) (b) (c)

Fig. 5. Example of a resampled screening process. (a) Initial distribution
of the sampling points. (b) Two different confidence level ellipse based on
the covariance matrix of the sampling points. (c) Screening results for the
sampling points of different levels.

coordinates could be obtained as

s =
((

x′ − xp
)

cos ε + (y′ − yp
)

sin ε
)2

τ1

+
(−(x′ − xp

)
sin ε + (y′ − yp

)
cos ε
)2

τ2
(20)

p0 is the prior distribution of initial status X0. At the initial
moment, the sampling points obey prior distribution p0. Fig. 5
shows a resampling process based on error-ellipse estimation.
In the resampling stage, two error ellipses are established
according to the initial covariance matrix of N sampling points
at time k, with different scales of 3σ (the outer one) and σ

(the inner one), respectively. During the resampling, N sam-
pling points are divided into three different levels on account
of their geometric positions. Na sampling points outside the
outer ellipse are defined as insignificant ones, which would
be discarded. The sampling points located in the middle of
the two error ellipses would be retained. Then, the last Nb

sampling points inside the inner ellipse are defined as signif-
icant ones, which would be replicated. Since we must ensure
the number of overall sampling points remains unchanged, the
first Nc = Na−
Na/Nb�Nb significant sampling points would
be replicated c1 = 
Na/Nb� + 2 times, and then, the remain-
ing Nb − Nc ones are replicated c2 = 
Na/Nb� + 1 times.
Furthermore, the sampling points, which have performed the
replication, would also be used as an initial input for the next
iteration. The detailed description of the EER algorithm is
shown in Algorithm 2.

C. GCF Based on EER

As mentioned above, GCF uses the Gaussian mixture dis-
tribution to approximate the posterior probability p̃(Xk|Z1:k)

and estimates the unknown parameters in the Gaussian mix-
ture model with the Gaussian condensation theory. However,
the Bayesian estimation could obtain the posterior probability
density by prediction and update, recursively. The previously
estimated deviation may affect the subsequent state estimation.
On this basis, we propose a GCF based on the EER algo-
rithm, which screens and replicates the sampling points in the
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Algorithm 2 EER

Input: [{Xi
k}Ni=1}, (xp, yp)]← status, confidence center

Output: {X̂i
k}Ni=1 ← status

for i = 1, N do
d← ellipse(Xi

k, (xp, xp)) � formula(20);
if d > s1 then

indexA(Na) = i;
Na = Na + 1;

else if d < s2 then
indexB(Nb) = i;
Nb = Nb + 1;

else
X̂index(n)

k = Xi
k;

n = n+ 1;
end if

end for
Nc = Na − 
Na/Nb� ∗ Nb;
for j = 1, Nb do

if j ≤ Nc then
c(j) = 
Na/Nb� + 2;
for l = 1, c(j) do

X̂index(n)
k = XindexB(j)

k ;
n = n+ 1;

end for
else

c(j) = 
Na/Nb� + 1;
for l = 1, c(j) do

X̂index(n)
k = XindexB(j)

k ;
n = n+ 1;

end for
end if

end for

prediction step on account of their geometric positions to the
confidence center. Therefore, it can suppress the cumulative
error in target tracking.

EER-GCF creates two ellipses with scales of 3σ and σ ,
respectively. To suppress the impact of previous estimation
errors, it performs replicating, retaining, and discarding on
sampling points at different levels, as discussed in the previous
section. With this constrained resampling strategy, the pos-
terior probability density p̃ could be obtained by recursive
prediction and update. Considering that the sufficient statistic
p̃ may infinitely increase in temporal series, the Gaussian con-
densation theory is used to approximate p̃ as Gaussian mixture
distribution p̂. Finally, the state corresponding to the maxi-
mum of p̂ is the expected estimation at the current moment.
The detailed description of the proposed EER-GCF is shown
in Algorithm 3.

D. Constraint Optimization Based on Spatial Distance

In this section, we integrate the spatial distance measure-
ments between target nodes to cooperative localization. In
this article, constrained Bayesian optimization is used to pro-
mote target tracking accuracy. First, EER-GCF is applied
at each time slot to calculate the mean and covariance
of state estimation as the prior knowledge of Bayesian
optimization. Then, distances between target nodes should
be acquired and introduced into the optimization process as
constraints. Furthermore, optimized mean and covariance of
the posterior distribution are derived by convex combination

Algorithm 3 EER-GCF
Input: [X0]← initial status
Output: {X̂k}Kk=1 ← status estimation

for k = 0, K do
if k = 0 then

Xj=1:N
0 ∼ p̂0 ←is the prior distribution of X0 and p̂0 ∼

N (μ0, Q0)
else

for j = 1, N do
Xj

k ← f1(Xj
k−1)⇒state transition function

end for
{X̂j

k}Nj=1 ← EER({Xj
k}Nj=1}, (xp, yp))�Algorithm 2: error-

ellipse re-sampling
μ

(i)
k = Fkμ

(i)
k−1

Q(i)
k = FkQ(i)

k−1FT
k + γ 2

p̃(Xk|Z1:k−1) = ∑m
i=1 αiN ({X̂j

k}Nj=1;μ(i)
k , Q(i)

k ) �

formula(9)
p̃k ← p̃(Xk|Z1:k−1) ∗ f2(Zk)⇒ likelihood function
{λk, p̂k} ← GCF(p̃k)�Algorithm 1: Gaussian condensation

filter
X̂k = find(p̂k = max(p̂k))

end if
end for

Fig. 6. Example of constrained sampling: ◦ represents those nodes for resam-
pling. The points within the constraint range (dotted circle) are remained. The
points outside the distance constraint range are projected, and + indicates the
sampling point after resampling. � and � are, respectively, the estimate before
and after optimization.

to approximate the integral calculation. The effectiveness
of resampling under distance constraint is displayed in
Fig. 6.

1) Bayesian Constraint Optimization: During the dynamic
estimation process, the sequential EER-GCF filter will
output the initial positions of each target at time k.
{Ak,1, Ak,2, . . . , Ak,M} works as the prior knowledge of fur-
ther cooperative Bayesian optimization. Then, we define the
joint state of the ith node and the jth node at time k as
rk = [Ak,i, Ak,j]T . Therefore, the mean uk = [uk,i, uk,j]T

and covariance Ck = [Ck,i, Ck,j]T of the joint state could be
obtained by GCF. Furthermore, given the distance constraint
c, once the posterior probability density p(r|c) is derived, the
posterior mean ûr|c and covariance Ĉr|c of the target state could
be obtained.

Assume that the ith target node can receive the measure-
ment Sk of M − 1 other target nodes at time k. The ith node
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will select the values that satisfied the distance constraint
c : ||ρr|| ≤ S, where ρ = [I2,−I2], and Ik represents a
k-degree identity matrix. We introduce a new state vector
z = Tr ∈ R

4, where r represents the joint state vector of
the target node, and z is a Gaussian distribution with mean uz

and covariance Cz, i.e., z ∼ N (uz, Cz). Therein, uz = Tur

and Cz = TCrTT could be obtained. The state vector z
is given by a reversible linear transformation, which con-
sists of the subvector z1 = A1 − A2 and z2 = A1 + A2,
where A1 and A2 represent arbitrary two nodes that can range

with each other. Therefore, T =
[

I2
I2

−I2
I2

]
can be verified.

After adding the distance constraint, we obtain new constraint
information

c :
∥
∥∥ρT−1z

∥
∥∥ = ‖z1‖ ≤ S. (21)

Therefore, the distance constraint is only related to z1.
2) Affine Transformation: We need to calculate the pos-

terior mean ûr|c and covariance Ĉr|c. As it is known that
ûr|c = T−1uz|c and Ĉr|c = T−1Cz|cT−T , we may turn the
problem into finding uz|c and Cz|c. With the following affine
transformation, we could obtain

uz2|z1 = υz2 + Bz1

Cz2|z1 = υz2 − BCT
z2z1

. (22)

The intermediate variables in (22) are denoted as B =
Cz2z1 C−1

z1
and υz2 = uz2 − Buz1 , respectively. Let uz2|z1 =

[uz1|c, uz2|c]T . Then, the conditional mean uz1|c of z1 is
expressed as

uz1|c =
∫

z1

z1p(z1|c)dz1. (23)

The conditional mean uz2|c is expressed as

uz2|c =
∫

z1

[∫

z2

z2p(z2|z1)

]
p(z1|c)dz1

=
∫

z1

uz2|z1 p(z1|c)dz1 =
∫

z1

(
υz2 + Bz1

)
p(z1|c)dz1

= υz2 + B
∫

z1

z1p(z1|c)dz1 = υz2 + Buz1|c. (24)

The conditional covariance matrix Cz|c is expressed as

Cz|c = Dz|c − uz|cuT
z|c (25)

where Dz|c =
[

Dz1|c Dz1z2|c
Dz1z2|c Dz2|c

]
. Therefore, the covariance of

posterior probability p(z1|c) can be expressed as

Dz1|c =
∫

z1

z1zT
1 p(z1|c)dz1. (26)

With the affine transformation, we could obtain the covariance

Dz1z2|c =
∫

z1

z1

[∫

z2

zT
2 p(z2|z1)dz2

]
p(z1|c)dz1

=
∫

z1

z1uT
z2|z1

p(z1|c)dz1

= uz1|cυT
z2
+ Dz1|cBT (27)

Dz2|c =
∫

z1

[∫

z2

z2zT
2 p(z2|z1)dz2

]
p(z1|c)dz1

=
∫

z1

Dz2|z1 p(z1|c)dz1

= Cz2 − BCT
z2z1
+ υz2υ

T
z2
+ υz2 uT

z1|cBT

+ Buz1|cυT
z2
+ BDz1|cBT . (28)

Therefore, we only need to calculate the integral about p(z1|c)
with (23) and (26). Then, the posteriori mean uz1|c and covari-
ance Cz1|c could be got by affine transformation without
calculating p(z|c) directly.

3) Integral Approximation: To avoid calculating complex
numerical integration, we use a convex combination to approx-
imate the conditional mean and covariance

ûz1|c �
2n∑

i=0

w(i)z(i)
1

D̂z1|c �
2n∑

i=0

w(i)z(i)
1

(
z(i)

1

)T
(29)

where z(i)
1 and w(i) denote the sampling points and weights,

respectively, and n is the dimensions of the state. When the
probability mass β of the sampling point z(i)

1 is within the
constraint range, the approximate value remains unchanged.
Otherwise, resample the points to ensure that the approxi-
mated average value falls within the convex boundary, thereby
reducing the dispersion. Therefore, the parameter β deter-
mines whether the sampling point is valid. Use the following
equation to select sampling points:

h(i) =

⎧
⎪⎪⎨

⎪⎪⎩

uz1 i = 0

uz1 + s1/2
β

[
C1/2

z1

]

i
i = 1, . . . , n

uz1 − s1/2
β

[
C1/2

z1

]

i
i = n+ 1, . . . , 2n

(30)

where Sβ is the confidence scale that satisfies ¶(s ≤ sβ) = β

and s = (z1 − uz1)
TC−1

z1
(z1 − uz1).

The deterministic sampling method will select 2n+ 1 sam-
pling points, and the sampling points that do not satisfy
the constraint conditions will be orthogonally projected to
the constraint boundary. The following equation is used to
sample:

z(i)
1 =

{
h(i) if

∥∥h(i)
∥∥ ≤ Sk

Sk‖h(i)‖h(i) others i = 0, . . . , 2n. (31)

The weight of the sampling point is updated as

wi =
{

1− n
sβ

, i = 0
1

2sβ
, i = 1, . . . , 2n.

(32)

The estimated mean and covariance of the posterior can be
obtained by the weighted average of the resampled sampling
points {z(i)

1 }2n
i=0. The description of the proposed constrained

optimization based on spatial distance constraints is shown in
Algorithm 4.
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Algorithm 4 Constraint Optimization Based on Spatial
Distance
Input: {ur = [u1, u2]T , Cr = [C1, C2]T , S12} ← the mean of joint

state and covariance, distance observation
Output: {ûr1|c, Ĉr1|c, ûr2|c, Ĉr2|c} ← the mean and convariance of

state after optimization
if ||u1 − u2|| � S12 then

uz = Tur, Cz = TCrTT ←reversible linear transformation
z1 = A1 − A2, z2 = A1 + A2
sβ = P(β) � formula(16)calculating a confidence scale[

Dz1
Dz1z2

Dz1z2
Dz2

]
= Dz = Cz + uzuT

z

Cz1 = Dz1|c − uz1 uT
z1

, Cz2 = Dz2|c − uz2 uT
z2

, Cz1z2 = Dz1z2|c −
uz2 uT

z1
for i = 0, 2n do

h(i) ← sample(n = 2) � formula(30)

if h(i) > S12 then
z(i)1 ← norm(h(i))� orthogonal projection

else
z(i)1 = h(i)

end if
if i = 1 then

w(i) = 1− n/sβ
else

w(i) = 1− 2/sβ
end if

end for
B = Cz2z1 C−1

z1
, υz2 = uz1 − Buz1

for i = 0, 2n do
ûz1|c = ûz1|c + w(i)z(i)1
D̂z1|c = D̂z1|c + w(i)z(i)1 (z(i)1 )T

end for
ûz2|c = υz2 + Buz1|c � formula(22)

ûz|c = [ûT
z1|c, ûT

z2|c]T

ûr|c = T−1ûz|c
D̂z1z2|c = uz1|cυT

z2
+ D̂z1|cBT � formula(27)

D̂z2|c = Cz2 − BCT
z2z1
+ υz2υ

T
z2
+ υz2 uT

z1|cυ
T
z2
+ BD̂z1|cBT �

formula(28)
Cz|c = Dz|c − uz|cuT

z|c � formula(25)

Ĉr|c = T−1Ĉz|cT−T

end if

E. CGCF Based on EER

This section first displayed a GCF based on EER to estimate
each mobile node’s position initially. Next, the target node
obtains the information gain from the inertial data in a tempo-
ral sequence. Then, the spatial distance between target nodes
is taken advantage of as mutual information to improve the
tracking accuracy. Therefore, it can achieve a higher precision
multitarget cooperative location.

When a GCF based on EER is applied, we first make a
rough estimation of the target state according to the center
point of a sampling set. Then, two error ellipses with dif-
ferent scales of 3σ and σ , respectively, are established, and
we achieve a resampling algorithm by hierarchical screen-
ing. After obtaining the mutual information between the target
nodes, the spatial distance constraint c is established.

ûr|c, which is closer to the real position, is obtained based
on constrained Bayesian optimization. Therefore, the position
estimation ûr|c optimized by the spatial constraint is con-
sidered to update the center point (xp, yp). Furthermore, the
filter estimation will obtain the spatial information gain of the

Algorithm 5 CEER-GCF
Input: [X0]← initial status
Output: {ûr1|c}Kk=1 ← status estimation

for k = 0, K do
if k = 0 then

Xj=1:N
0 ∼ p̂0 ←is the prior distribution of X0

else
for j = 1, N do

Xj
k ← f1(Xj

k−1)⇒state transition function
end for
{X̂j

k}Nj=1 ← EER({Xj
k}Nj=1}, (xp, yp))�Algorithm 2: error-

ellipse re-sampling
μ

(i)
k = Fkμ

(i)
k−1

Q(i)
k = FkQ(i)

k−1FT
k + γ 2

p̃(Xk|Z1:k−1) = ∑m
i=1 αiN ({X̂j

k}Nj=1;μ(i)
k , Q(i)

k ) �

formula(9)
p̃k ← p̃(Xk|Z1:k−1) ∗ f2(Zk)⇒ likelihood function
{λk, p̂k} ← GCF(p̃k)�Algorithm 1: Gaussian condensation

filter
X̂k = find(p̂k = max(p̂k))

u1 = X̂k, C1 = cov(X̂1:N
k ) ← the mean and covariance of

sampling points at time k
ur = [u1, u2]T , Cr = [C1, C2]T ← the target node that

satisfies spatial constraint
(ûr1|c, Ĉr1|c, ûr2|c, Ĉr2|c)← CDS(ur, Cr, S12)� Algorithm

4: constraint optimization based on spatial distance
(xp, yp) ← f1(ûr1|c) ← update the confidence center at

time k + 1
end if

end for

previous time at the next moment. It can achieve cooperative
localization based on the fusion of both temporal and spa-
tial information. The description of the proposed cooperative
EER-based GCF (CEER-GCF) is shown in Algorithm 5.

IV. THEORETICAL ANALYSIS

In this section, we carry out the theoretical derivation to
prove the validity of the proposed algorithm. First, PCRLB
of multitarget cooperative tracking accuracy is derived. Next,
the complexity analysis of both proposed and comparative
methods is conducted.

A. Posterior Cramér–Rao Lower Bound

The PCRLB [36] provides the theoretical lower limit on the
accuracy of our proposed algorithm. Define X̂k as an unbiased
estimate of the target state Xk. Thus, the mean-square error of
the state estimate has the following form:

E

{(
X̂k − Xk

)(
X̂k − Xk

)T
}
≥ J−1

k (33)

where Jk is the Fisher information metric (FIM) at time k, and
J−1

k is PCRLB.
The multitarget cooperative tracking algorithm fuses

spatial–temporal posterior information. Therefore, the joint
PDF is redefined as

p
(

d̂k, l̂k, θ̂k, X̂k

)
= p
(

d̂0|X0

) k∏

i=1

p
(

d̂i|Xi

)
p
(

l̂k|Xi−1, Xi

)

× p
(
θ̂k|Xi−1, Xi

)
(34)
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where d̂k is the estimated distance between the target nodes,
and l̂k and θ̂k denote the estimated step and estimated angle,
respectively. Therefore, the joint probability density at time k
is represented as

pk = p
(

d̂0:k, l̂0:k, θ̂0:k, X̂0:k

)
(35)

Based on the joint PDF pk, the Fisher information matrix
for multitarget cooperative tracking is written as

J(X0:k) =
⎡

⎣
E
{
−�

X0:k−1
X0:k−1

ln pk

}
E
{
−�

X0:k
X0:k−1

ln pk

}

E
{
−�

X0:k−1
X0:k

ln pk

}
E
{
−�

X0:k
X0:k

ln pk

}

⎤

⎦

=
[

Uk Lk

LT
k Wk

]
. (36)

According to [36], the Fisher information matrix Jk can be
obtained by the pseudoinverse of the matrix J(X0:k), namely

Jk = Wk − LT
k U−1

k Lk. (37)

Furthermore, the joint PDF at time k + 1 according to (34)
and (35) is defined as

pk+1 = pkp
(

d̂k+1|Xk+1

)
p
(

l̂k+1|Xk, Xk+1

)

·p
(
θ̂k+1|Xk, Xk+1

)
. (38)

The Fisher information matrix of multitarget cooperative
tracking according to the joint PDF pk+1 can be expressed as

J(X0:k+1) =
⎡

⎣
Uk Lk 0
LT

k Wk + H11
k H12

k
0 H12

k φk+1+H22
k

⎤

⎦ (39)

where H11
k , H12

k , and H22
k stand for the posterior information

based on inertial measurements, namely

H11
k = El̂,θ̂

{
−�

Xk
Xk

ln p
(

l̂k+1|Xk, Xk+1

)

·p
(
θ̂k+1|Xk, Xk+1

)}
(40)

H12
k = El̂,θ̂

{
−�

Xk+1
Xk

ln p
(

l̂k+1|Xk, Xk+1

)

·
(
θ̂k+1|Xk, Xk+1

)}
=
(

H21
k

)T
(41)

H22
k = El̂,θ̂

{
−�

Xk+1
Xk+1

ln p
(

l̂k+1|Xk, Xk+1

)

·p
(
θ̂k+1|Xk, Xk+1

)}
(42)

where φk+1 is the positional information based on range
measurements at time k + 1, namely

φk+1 = Ed̂k+1

{
−�

Xk+1
Xk+1

ln p
(

d̂k+1|Xk+1

)}
. (43)

Finally, the Fisher information matrix at time k + 1 can be
derived from J(X0:k+1) and Jk, namely

Jk+1 = φk+1 + H22
k −

[
0 H21

k

][Uk Vk

VT
k Wk + H11

k

][
0

H12
k

]

= φk+1 + H22
k − H21

k

(
Jk + H11

k

)−1
H12

k (44)

where H11
k �= H12

k �= H22
k as the step noise and angle noise

are non-Gaussian.

TABLE I
COMPLEXITY COMPARISON AMONG DIFFERENT ALGORITHMS

B. Complexity Analysis

Regarding the theoretical analysis, the complexity of non-
linear filter algorithms is directly related to the state dimension
n. The UKF algorithm selects 2n + 1 sigma points, and the
complexity of the UKF algorithm is O(n ∗ (2n + 1)). The
complexity of the PF algorithm is directly affected by the num-
ber of particles and resampling, so the complexity of the PF
algorithm is O(N ∗ n), where N is the number of particles.
The GCF algorithm approximates the posterior probability
distribution to a Gaussian mixture distribution, so the com-
plexity of the GCF algorithm is O(m ∗ n), where m is the
number of mixed Gaussian kernels. It is known that the num-
ber of particles N is typically several orders of magnitude
larger than m to achieve adequate performance. Therefore,
for high-dimensional problems, high complexity is usually
inevitable.

For error-ellipse constraints, N sampling points need to be
selected and replicated. If the original sampling points are all
selected, and none need to be copied. The complexity of the
resampling algorithm is O(N). If each sampling point needs to
be copied, and the maximum number of replications is no more
than 2. Hence, the complexity of the resampling algorithm is
O(2N). In general, since the number of sampling points before
and after resampling is unchanged, the number of sampling
points within the inner ellipse will not exceed N/3, and the
maximum number of replications will not exceed 2. Therefore,
the complexity of the resampling algorithm is O(N), and the
complexity of EER-GCF is O(m ∗ n+ N).

For cooperative algorithms, the complexity is related to
the number of target nodes M in the cooperative network.
The spatial distance constraint optimization algorithm is deter-
mined by sigma point sampling, and the complexity of the
cooperative algorithm is directly related to the joint state
vector dimension r. Therefore, the complexity of the CGCF
algorithm is O(M ∗ r + m ∗ n), and that of CEER-GCF is
O(M∗r+m∗n+N). Complexity comparisons among different
algorithms are shown in Table I.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Environment

We carried out the location tracking experiment of the tar-
get node by MATLAB. The simulation runs on a PC with
Windows 10 operating system, Intel 4-core i5 CPU, and 16-GB
memory. As the motion law of the mobile node conforms to
the dynamic random walking process, the moving scene of
the target node is set to 50 m × 50 m. The initial position
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(a) (b)

Fig. 7. Error distribution of different algorithms in single-target tracking. (a) Noise distribution obeys Student-t distribution. (b) Noise distribution obeys
α-stable distribution.

TABLE II
PARAMETER SETTING

(x0, y0) and the heading angle θ of the target node are random
in each experiment. It takes 50 steps randomly in the above-
mentioned two-dimensional scene. In this article, the number
of components for filters using mixtures of Gaussian is set
as m = 8 [37]. The parameter settings in the experiment are
detailed in Table II.

B. Performance Analysis of Single-Target Tracking

In harsh environments, the measurement model is often non-
linear, so it is difficult for single-target tracking algorithms to
provide high-precision position estimation. This article pro-
poses a GCF based on the EER algorithm to effectively
estimate the state. In order to verify the effectiveness of EER-
GCF, we compared it with state-of-the-art method, namely,
UKF [13] and PF [15]. The error criterion is represented as
the Euclidean distance between the forecast location (xf , yf )

and the true location (xtrue, ytrue), namely

e =
√(

xf − xtrue
)2 + (yf − ytrue.

)2 (45)

To analyze how various noise distributions impact the
performance, numerical experiments are performed, and the
positioning error of a typical use case is shown in Fig. 7.
The step noise n1,k and the angle noise n2,k obey the Student-t
distribution [24]–[26] and α-stable distribution [23], respec-
tively. Then, the following conclusions could be drawn.

1) Both UKF and PF have a large oscillation phenomenon,
while GCF is more stable and has higher positioning

precision. It shows that GCF-like filters have the
advantage of improving the positioning accuracy in
processing nonlinear measurement models.

2) Compared with GCF, EER-GCF has a smaller error
distribution. As the iteration progresses, EER-GCF sup-
presses the effect of previous errors to a certain extent.
This proves that the proposed EER-GCF algorithm
can effectively improve the accuracy of single-target
tracking.

3) When the measurement noise fits for various distri-
butions, compared with other methods, EER-GCF can
always maintain a relatively high accuracy, which ver-
ifies that our proposed algorithm can, to some extent,
conquer the problem of non-Gaussian noise.

Furthermore, to verify the stability of EER-GCF, a random-
walking-based experiment is performed, where UKF, PF, and
GCF are also considered as contrast methods. They performed
the random walk K = 100 times, and the root mean-square
error is defined as

RMSE =
√√√√ 1

K

k∑

i=1

e2. (46)

Fig. 8 shows the root mean-square error of different algorithms
in single-target tracking. The following conclusions could be
drawn. The performance of UKF is relatively poor. PF and
GCF have a closer root mean-square error distribution, but GCF
still outperforms on precision. The error curve of EER-GCF is
significantly lower than the others. Compared with GCF, the
accuracy of EER-GCF is improved by 28.6%, and it has obvious
advantages in estimation accuracy and stability.

The cumulative distribution function (CDF) of RMSE in
single-target tracking is shown in Fig. 9. The positioning error
of EER-GCF is less than 1 m with 97% probability, and
that of GCF is less than 1.4 m with the same probability.
It also verifies the effectiveness of EER-GCF in single-target
tracking.

Then, the impact of noise variance on the positioning
performance will be discussed. By setting different noise co-
variances, EER-GCF and contrast algorithms are implemented
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Fig. 8. RMSE of different algorithms in single-target tracking.

Fig. 9. CDF of different algorithms’ RMSE in single-target tracking.

Fig. 10. Influence of noise variance on tracking accuracy.

to take 100 steps random walk. The detailed results are shown
in Fig. 10. It can be seen from the figure that the tracking
error grows with the increase of noise variance. EER-GCF
has higher precision than the others, and it is less affected by
the noise variance.

To analyze how the number of sampling points impacts the
tracking performance, experiments are set up using GCF and
EER-GCF. The precision is represented by RMSE. In addition,
algorithms’ execution time is also taken into consideration,

Fig. 11. Influence of the number of sampling points on tracking accuracy.

which can, to some extent, verify the complexity of various
algorithms. The detailed results are shown in Fig. 11, from
which the following conclusions could be obtained: as the
number of sampling points increases, the positioning error
gradually decreases, and finally, tend to converge. However,
the runtime increases linearly. When the sampling points’
number is less than 4000, as it increases, the accuracy
improves significantly. While it is greater than 4000 and gen-
erally increases, the positioning error changes more smoothly.
Therefore, to balance the marginal cost of accuracy and exe-
cution, an appropriate number of sampling points should be
selected, and 4000 is preferred in this article.

C. Performance Analysis of Multitarget Cooperative
Tracking

Our proposed multitarget cooperative tracking algorithm,
i.e., CEER-GCF, integrates spatial distance information to
obtain high precision, aiming to suppress the cumulative error
problem caused by a nonlinear measurement model. In order
to verify its effectiveness, the random walking experiments
were repeated 100 times with considering cooperative PF
(CPF) [15], CGCF, and CEER-GCF. The cooperative root
mean-square error is considered as assessment criteria, which
is defined as

CRMSE = 1

M

M∑

i=1

√√√√√
1

K

k∑

j=1

e2. (47)

Furthermore, the statistical positioning errors of all-mentioned
algorithms are compared with PCRLB [36] under the same
noise condition. The results are shown in Fig. 12, where the
following conclusions could be drawn:

1) The cooperative root mean-square error curves of all
mentioned cooperative algorithms are stable in gen-
eral. The suitable method could effectively fuse the
information of multiple single targets and utilize it
comprehensively to achieve performance optimization.
Namely, cooperative algorithms have higher stability.

2) The positioning accuracy of CPF reaches 0.39 m, while
that of CGCF is 0.32 m, and that of CEER-CGCF
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Fig. 12. RMSE of different algorithms in multitarget tracking.

Fig. 13. CDF of different algorithms’ RMSE in multitarget tracking.

reaches 0.27 m. CEER-GCF has higher accuracy, and
the root mean-square error curve of CEER-GCF is closer
to the cooperative PCRLB. It verifies the effectiveness
of our proposed algorithm described in this article in
cooperative tracking.

Fig. 13 shows the CDF curve of the root mean-square error
of different algorithms in multitarget tracking. We can con-
clude that the positioning accuracy of CPF is less than 0.45 m,
the positioning accuracy of CGCF is less than 0.35 m, and the
positioning accuracy of CEER-GCF is less than 0.3 m. It also
verifies that the CEER-GCF algorithm proposed in this article
can achieve higher precision cooperative tracking.

Fig. 14 shows how the number of target nodes impacts the
performance of different cooperative tracking algorithms, from
which we can conclude the following.

1) With the increase of the number of targets, the posi-
tioning error curve is smooth, and CEER-GCF is more
accurate. Therefore, when the larger the number of tar-
gets is, the algorithm described in this article is more
effective, which is quite suitable for applications with
large-scale deployment.

2) With the increase of the number of targets, the execu-
tion time of all algorithms gradually grows, and that
of CEER-GCF is slightly higher than other algorithms.

Fig. 14. Influence of the number of target nodes on the performance of the
algorithm.

TABLE III
POSITIONING ACCURACY OF DIFFERENT ALGORITHMS

However, it can satisfy the real-time requirements of
general systems.

To sum up, as shown in Table III, we can conclude the
following.

1) In single-target tracking, GCF can reach a positioning
accuracy of about 1.12 m. Compared with other algo-
rithms, GCF has higher accuracy, but its running time
is slightly higher. This is due to the iterative solution of
the GCF in the Gaussian condensation step.

2) EER-GCF can reach a positioning accuracy of about
0.80 m in single-target tracking and provides a higher
positioning accuracy. Since the resampling algorithm
needs replicating, the execution of EER-GCF runs
slightly longer. However, it is completely acceptable for
real-time applications.

3) In the multitarget tracking, CEER-GCF can achieve a
positioning accuracy of about 0.27 m. Compared with
single-target tracking, CEER-GCF greatly improves the
positioning accuracy and stability. A cooperative track-
ing algorithm takes time to optimize spatial information,
but it can satisfy the real-time requirements of most
systems.

VI. CONCLUSION

In this article, a GCF is proposed to conquer non-Gaussian
noise in target tracking. In the Gaussian condensation stage,
the unknown parameters in the Gaussian mixture model are
adjusted by recursive iteration, and the model is used to
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approximate the true posterior probability distribution. In the
experiment, a single target tracking simulation was performed
based on the random walking process. GCF outperforms other
nonlinear filters and shows its ability to conquer non-Gaussian
noise.

An EER-GCF is proposed to suppress the cumulative errors
of inertial target tracking. According to the sampling points’
geometrical positions, we realized the hierarchical screening
of the sampling points. The experimental results verify that
EER-GCF can effectively suppress the influence of cumulative
errors.

For cooperative tracking scenes, a constrained GCF (CEER-
GCF) is proposed. We took the information gain in tem-
poral series as the prior knowledge of spatial cooperative
optimization and established the distance constraint between
target nodes. Then, we obtained the state optimization based
on spatial distance constraints. The results verify that the
CEER-GCF algorithm can achieve high-precision positioning
in harsh environments.

APPENDIX

Parameterize the Gaussian mixture model with
(ς1, . . . , ςm, . . . , μ1, . . . , μm,

∑−1
1 , . . . ,

∑−1
m ), where

αi = e−ςi
∑m

j=1 e−ςi

λ∗ is a stationary point of �(λ) if and only (∂�/∂ςi)(λ
∗),

(∂�/∂μi)(λ
∗), and [∂�/(∂

∑−1
i )](λ∗) vanish for i =

1, . . . , m. Using the properties (∂�/∂X)(XTLX) = XT(L+LT),
(∂�/∂L)(XTLX) = XXT , and (∂�/∂L)(log |L|) = L−1 for any
X ∈ R

� and symmetric matrix L, it is straightforward to show
that

∂�

∂ςi
= −αi + Ep

{
qi(X; λ)

q(X; λ)

}

∂�

∂μi
= −Ep

{
qi(X; λ)(X − μi)

T∑−1
i

q(X; λ)

}

∂�

∂
∑−1

i

= −1

2
Ep

{
qi(X; λ)

(∑
i−(X − μi)(X − μi)

T)

q(X; λ)

}

and the result is obtained by checking that these partial
derivatives vanish at λ∗.
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