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A B S T R A C T   

Localization is one of the most important topics of cyber physical system. In the last decades, much attention has 
been paid to the precise localization and performance evaluation in wireless sensor networks. Inertial- 
measurement-unit and Time-of-Arrival fusion is a state-of-the-art method to solve the accumulative error and 
drifting problem faced by sole inertial-measurement-unit positioning and navigation. Network cooperative 
technology could effectively suppress the accumulative error. This paper presents a spatial-temporal constrained 
particle filter algorithm for cooperative target tracking, so as to solve the problem of multi-target high-precision 
position tracking in complex and highly dynamic environments. Firstly, we propose an error-ellipse-resampling 
particle filter method. In the resampling stage of the particle filter, error ellipses with different confidence 
probabilities would be established with the use of the known estimated center and confidence scale, to achieve 
hierarchical resampling optimization based on the geometrical position of particles. As for cooperative tracking, 
an optimization method of state estimation based on spatial distance constraint is proposed, so that the Bayesian 
filter can benefit from spatial information and achieve cooperative tracking of spatial-temporal information 
fusion. Numerical experimental results show that the proposed error-ellipse-resampling particle filter could 
decrease the growth rate of cumulative errors and reach a positioning accuracy of 1.05 m, multi-target coop-
erative error-ellipse-resampling particle filter can effectively eliminate the cumulative error and achieve a 
positioning accuracy of 0.24 m.   

1. Introduction 

Target tracking has attracted extensive attention in applications such 
as intelligent traffic management systems and autonomous driving 
(Yuan et al., 2017; Wang et al., 2020a; Chen et al., 2019a). The Global 
Positioning System (GPS) is generally suitable for substantial outdoor 
positioning applications. However, in urban areas with dense buildings, 
GPS positioning cannot take advantage of its high accuracy due to the 
effects of signal blocking and multipath. Conventional wireless posi-
tioning technologies, such as Received Signal Strength (RSS) (Duan 
et al., 2020), Time of Arrival (TOA) (Xu et al., 2017), Time Difference of 
Arrival (TDOA) (Nicholas et al., 2018), and Angle of Arrival (AOA) 
(Zheng et al., 2018), could provide real-time accurate position estima-
tion in areas that cannot be covered by GPS signals. However, in prac-
tical applications, these methods require pre-deployment of anchors, 
which makes them unsuitable for positioning estimation in unknown 
areas (Bianchi et al., 2019). Currently, Inertial Navigation System (INS) 
that utilizes an Inertial Measurement Unit (IMU), could provide a 

low-cost solution for position estimation in unknown areas. The 
advantage of INS is that its position estimation is self-contained without 
additional infrastructure (Huang et al., 2010). However, it still faces the 
shortcoming of accumulative errors. In other words, it has difficulties to 
provide accurate position estimation for long-time applications (Ahmed 
and Tahir, 2017). 

Filtering methods provide a practical and reliable positioning solu-
tion for improving the positioning accuracy of IMU (Vagle et al., 2018). 
Jonasson et al. (2020) developed two Extended Kalman Filter (EKF) 
concepts to estimate the vehicle position during a safe stop. In (Enayati 
et al., 2015), an improved Unscented Kalman Filter (UKF) is designed for 
robust estimation of position. Liu et al. (2020) proposed an improved 
Particle Filter (PF) algorithm for reducing the long-term accumulative 
error inherent in inertial positioning. However, they could only suppress 
the growth rate of the cumulative errors to a certain extent, but not 
eliminate it completely. So far, there are still challenges in improving the 
accuracy of positioning algorithms with filtering techniques. In practical 
applications, system models and measurement models are usually 
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non-linear. EKF estimates the mean and covariance of the state by 
linearizing the state equation, but it is accompanied by a tedious 
calculation process of the Jacobian matrix (Ghobadi et al., 2017). Since 
errors are introduced by linearization, UKF is still not suitable for 
higher-order nonlinear system models (Lee and McBride, 2019). 

Compared with other filtering methods, although PF based on Monte 
Carlo sampling (Wang etal., 2020b) would pay more computational 
cost, it has better adaptability to nonlinear non-Gaussian systems (Fu 
and Jia, 2010; Veeramalla and Talari, 2020). However, PF still faces the 
problem of sample degeneracy and impoverishment (Ghobadi et al., 
2017; Fu and Jia, 2010). Existing studies have proposed solutions to 
improve resampling, such as systematic resampling (Ala-Luhtala et al., 
2016), stratified resampling (Li et al., 2015), etc. Both resamplings are 
based on a layered idea. After a series of iterations, the number of par-
ticles will be reduced, which would result in that most of the weights are 
occupied by a little part of them. Thus, the final state estimation results 
of general methods are not always as satisfactory as expected. To address 
this issue, in this paper, we proposed a resampling algorithm based on 
error ellipse estimation. The error ellipses are constructed based on 
different confidence probabilities, and the particle set is implemented to 
solve the problem of sample degeneracy and impoverishment. 

In addition, the multi-source information fusion method is also a 
typical means to solve the accumulative errors of IMU (Chen et al., 
2019b). IMU/GPS integrated navigation system could achieve 
centimeter-level positioning accuracy in vehicle navigation, but it 
cannot provide smooth positioning services in densely-built urban areas 
(Zhao, 2016). IMU/WiFi fusion provides a relatively stable positioning 
solution but requires pre-deployment of anchors and a large number of 
pre-measurements (Zou et al., 2017). With the implementation of 
IMU/UWB (Ultra-Wideband) fusion positioning technology, a reliable 
implementation for the positioning requirements under a long time and 
large distance span could be satisfied (Xu et al., 2018). UWB positioning 
method bases on TOA distance measurements, and it could provide 
decimeter-level positioning accuracy. Nevertheless, most IMU/TOA 
fusion positioning methods still need to deploy communication base 
stations. 

In anchor-free scenarios, the mobile node only need integrate inertial 
sensor and ranging sensor to achieve multi-target cooperative posi-
tioning based on its own-collected inertial and distance measurements 
(Fan et al., 2019). The distance measurements between nodes could be 
used as spatial state constraints. With the use of Bayesian statistical 
inference, the posterior state mean under distance constraints would be 
obtained (Zachariah et al., 2012). Xu (Xu et al., 2019) and Zihajehzadeh 
(Zihajehzadeh and Park, 2016) respectively proposed cooperative 
positioning techniques based on IMU/TOA fusion, which utilized spatial 
information to optimize the tracking of multi-target positions. However, 
these static fusion optimization methods also require the deployment of 
external anchors. Wireless signals are easily blocked due to 
non-line-of-sight (NLOS) factors and finally result in positioning errors. 
To address this issue, we introduced a statically optimized posterior 
state mean to the filtering process in time series, and achieved 
spatial-temporal fusion in anchor-free cooperative target tracking. 

Generally, in this paper, we propose a cooperative target tracking 
algorithm that combines spatial-temporal measurements. In the aspect 
of time series, an optimized historical position is used as the initial 
prediction center to establish error ellipses, and an improved layered 
resampling algorithm is put forward to solve the particle degradation 
and depletion problem faced by traditional particle filtering. Further-
more, we propose a constrained Bayesian optimization method, inte-
grating spatial distance ranging to achieve position optimization under 
multi-target distance constraints. To further improve the positioning 
performance, the optimized position status would be applied to establish 
error ellipses, contributing to the cooperative algorithm with spatial- 
temporal fusion. The main contributions of this paper are summarized 
as follows:  

● We propose a particle filter algorithm based on spatial-temporal 
constraints. On account of the IMU estimated center and confi-
dence scales, error ellipses with different confidence probabilities are 
established, and hierarchical resampling based on particle geometric 
position is implemented. Through the particle division and resam-
pling mechanism of different weight levels, the sample degeneracy 
and impoverishment problem is to some extent resolved. 

● To achieve multi-target cooperative tracking, we propose an opti-
mization method for filtering state estimation based on spatial dis-
tance constraints. Bayesian recursive filtering estimation in time 
series could benefit from the spatial measurements. Based on the 
optimized posterior state estimation, the error ellipse estimation 
center in time series is closer to the true position, thereby eliminating 
the cumulative error with the use of proposed cooperative tracking 
algorithm. 

Table 1 summarizes the notations used later in this paper. The 
remainder of this paper is organized as follows: Section 2 presents the 
symbolic descriptions, related definitions, and model descriptions of the 
problems described. Section 3 focuses on the multi-target cooperative 
constrained particle filter algorithm, which describes the implementa-
tion of layered resampling and cooperative constrained optimization 
using error ellipse estimation. Section 4 derives the posterior Cramér 
Rao Lower Bound (PCRLB) of the cooperative tracking and details the 
complexity analysis. Numerical simulation and practical experiments 
are carried out in Section 5. Conclusions are drawn in Section 6. 

Table 1 
Notations.  

Symbol Description 

X Position state 
X̂  Estimate state 

Κ Joint position state 
ml, Cl Position mean and covariance 
m̂l , Ĉl  Posterior position mean and covariance 

mz1 |c ,Bz1 |c  Conditional position mean and covariance 
(

xp, yp

)
IMU estimate center 

W Particle weight 
P Coordinate 
V Velocity 
K Time scale 
ts Sampling interval 
Na Number of target nodes 
Z Measurement 
A Acceleration 
μ Process noise 
D True distance 
d̂  Distance measurement 

θ True angle 
θ̂  Angle measurement 

ϵ1,k Step noise of intra-node 
ϵ2,k Angle noise of intra-node 
ϵ3,k Distance noise of inter-node 
γ2

1,k  Noise variance of step 

γ2
2,k  Noise variance of angle 

γ2
3,k  Noise variance of distance 

ϕ Particle initialization noise 
N Number of particles 
δ(⋅) Dirac function 
E{⋅} Expectation operator 
α Confidence probability of error ellipse 
s Confidence scale of the error ellipse 
φ Tilt angle of the error ellipse 
λ Feature vector 
I Identity matrix  
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2. Problem formulation 

2.1. Dynamic model 

Consider the cooperative network contains Na target nodes. Each 
target is equipped with a distance measurement sensor and an inertial 
measurement sensor. It is represented by 𝒩 a = {1, 2, 3, …, Na}. The 
measurement process and state transition process are performed in 
discrete time tk, k = 0, 1, 2, …, K. Xk,n ∈ R4 defined as the state infor-

mation of node n at time k, which includes coordinate vector Pk,n =

[
xk,n, yk,n

]T 
and velocity vector Vk,n =

[
vxk,n, vyk,n

]T
. Then, the 

augmented state Xk could be expressed as: 

Xk =
[
Pk,1:Na ,Vk,1:Na

]T (1)  

For multi-target cooperative tracking problem, we firstly present the 
dynamic model under the cooperative condition. As shown in Fig. 1, it is 
assumed that the motion law of the mobile node conforms to the dy-
namic random walk process (Ahn et al., 2019). Thus, we use the 
first-order Markov model for dynamic modeling, and the state Xk− 1,n of 
the target node n at time k − 1 would contribute to the state Xk,n at time 
k, denoted as: 

Xk,n = FXk− 1,n + GAk− 1,n + Gμ (2)  

where F =

⎡

⎢
⎢
⎣

1 0 ts 0
0 1 0 ts
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

t2
s /2 0
0 t2

s /2
ts 0
0 ts

⎤

⎥
⎥
⎥
⎥
⎥
⎦

are state transition 

matrices. ts denotes the sampling interval, and μ =
[
μx, μy

]T is Gaussian 
process noise with mean 0 and variance σ2, i.e., μx, μy ∼ N

(
0, σ2). The 

acceleration at time tk− 1 is notated as Ak− 1,n = [axk− 1,n , ayk− 1,n ]
T , and the 

components in both directions are randomly generated from {0, − g, g}
with probabilities modeled as a random Markov jump (Li et al., 2012). In 
actual physical measurements, step length and angle measurement 
could be obtained by integrating the acceleration and angular velocity. 
The step length measurement of the target node could be simplified as: 

d̂k,n = dk,n + ϵ1,k, ϵ1,k ∼ N
(

0, γ2
1,k

)
(3)  

where dk,n represents the true distance of the target node n moving from 
time k to time k + 1, namely 

dk,n =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xk+1,n − xk,n

)2
+
(
yk+1,n − yk,n

)2
√

(4)  

and ϵ1,k is Gaussian step length noise with mean of 0 and variance of γ2
1,k. 

Then, the vector d̂ =
[
d̂0,n, d̂1,n,…, d̂K− 1,n

]T 
reflects the step measure-

ment information. The angle measurement is denoted as: 

θ̂k,n = θk,n + ϵ2,k, ϵ2,k ∼ N
(

0, γ2
2,k

)
(5)  

where θk,n is the true horizontal angle, namely 

θk,n = arctan
yk+1,n − yk,n

xk+1,n − xk,n
(6)  

and ϵ2,k is Gaussian angle noise with mean of 0 and variance of γ2
2,k. 

Then, the vector θ̂ =
[
θ̂0,n, θ̂1,n,…, θ̂K− 1,n

]T reflects the angle measure-
ment information. The external measurement between different nodes at 
time k is denoted as: 

d̂k,nj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xk,n − xk,j

)2
+
(
yk,n − yk,j

)2
√

+ ϵ3,k, ϵ3,k ∼ N
(

0, γ2
3,k

)
(7)  

where ϵ3,k is Gaussian distance noise with mean of 0 and variance of γ2
3,k. 

In short, Zk,nn :=
[
d̂k,n, θ̂k

]
reflects the internal inertial measurement of 

the intra-node, and Zk,nj :=
[
d̂k,nj

]
reflects the distance measurement of 

the inter-node. 

2.2. Bayesian model of cooperative tracking 

The position and measurements of the target node are represented as 
a set of random variables. According to the state evolution process of 
Markov model, the joint probability density function of the measure-
ment and the augmented state from time t1 to time tK is defined as: 

f (Z|X) =
∏K

k=1
f (Xk|Xk− 1)

⏞
dynamic model

⋅ f (Zk|Xk)
⏞

measurement model

(8)  

where X: = X1:K, Z: = Z1:K. Assuming that the dynamics of different nodes 
are independent of each other, the state parameters of the dynamic 
model could be decomposed into: 

f (Xk|Xk− 1) =
∏

n∈Na

[
f
(
Xk,n

⃒
⃒Xk− 1,n

)
×

∏

j∈Na\{n}

f
(
Xk,n

⃒
⃒Xk− 1,nj

) ]

(9)  

where Xk− 1,nj: = Xk− 1,n − Xk− 1,j. The measurements between different 
nodes are independent of each other, and they are also affected by the 
position states and various parameters. Thus, the probability density 
function of the measurement model could be denoted as: 

f (Zk|Xk) =
∏

n∈Na

[

f
(
Zk,nn

⃒
⃒Xk,n

)⏞
intra− node measurements

×
∏

j∈Na\{n}

f
(
Zk,nj

⃒
⃒Xk,nj

)⏞
inter− node measurements ]

(10)  

where Xk,nj: = Xk,n − Xk,j. As shown in Fig. 2, we use the red connection 
to indicate the relationship of intra-node measurements, and the green 
connection denotes the dependence of the inter-node measurements. In 
scenarios with spatial cooperation, the Fisher Information Matrix (FIM) 
(Win et al., 2018) has an off-diagonal block that corresponds to the 
spatial cooperation measurements, and the graph has measurement 
nodes that connect different agents. In scenarios with spatial-temporal 
cooperation, the FIM has off-diagonal blocks corresponding to tempo-
ral measurements, and the graph has measurement nodes that connect 
agents at consecutive time instants. 

Assume that the state transition process follows the first-order Mar-
kov model, that is, p(Xk|X1:k− 1) = p(Xk|Xk− 1). The prior probability 
density function p(Xk|X1:k− 1) of the dynamic model could be calculated 

Fig. 1. Schematic diagram of multi-target cooperative tracking in the center of 
the city: a red one-way curve represents the inertial measurement of the intra- 
node, and a red two-way arrow denotes the range measurement of the inter- 
node. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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from the prior probability distribution p(Xk− 1|X1:k− 1) at the previous 
moment, namely 

p(Xk|Z1:k− 1) =

∫

p(Xk|Xk− 1)
⏞

dynamic model

p(Xk− 1|Z1:k− 1)
⏞

previous posterior

dXk− 1 (11)  

among which p(Xk− 1|Z1:k− 1) is a known quantity, and p(Xk|Z1:k− 1) is 
determined by the above dynamic model. After obtaining the indepen-
dent measurement Zk at time t, the posterior probability density function 
can be updated to: 

p(Xk|Z1:k) =
p(Zk|Xk)

⏞
measurement model

p(Xk|Z1:k− 1)
⏞

current prior

p(Zk|Z1:k− 1)
⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟

normalized constant

(12)  

where p(Xk|Lk) is a likelihood function defined by the measurement 
model and p(Zk|Z1:k− 1) is a normalized constant. In summary, with 
obtaining the prior estimate p(Xk|Z1:k− 1) at the current time and the 
conditional probability p(Zk|Xk), the posterior probability p(Xk|Z1:k) at 
the current time could be derived from Bayesian recursion theory. 

3. Cooperative constrained PF algorithm 

In this section, we firstly proposed the error-ellipse-based resampling 
algorithm for filtering estimation of target nodes. On this basis, the 
multi-target cooperative particle filter algorithm based on distance 
measurement is described to realize the spatial-temporal fusion for 
cooperative tracking. 

3.1. Error-ellipse-based resampling 

In this subsection, we first briefly reviewed the flow of particle 
filtering, then described the error elliptic constraint method, and finally 
introduced the particle weight redistribution based on the error 
resampling algorithm through the screening and replication of particles, 
so as to reduce the particle dilution problem. 

3.1.1. Review of PF 
PF provides a method for recursively generating the posterior 

probability density function, that is, using a set of particles to represent 
the posterior probability distribution of the state, which also meets the 
idea of Monte Carlo sampling (Duan et al., 2020). The standard process 
of PF contains initialization, prediction, and update. The sampled par-
ticles are generated at the initial stage. Then, the prediction and 

updating process would be executed cyclically at time {tk,1 ≤ k ≤ K}, 
and finally put forward the state estimation results of the target node. 

Initialization: Generally, PF completes the estimation of state Xk by 

updating a set of random measurements 
{

X(i)
k ,w(i)

k

}N

i=1 
which consists of 

N particles X(i)
k and the corresponding weight w(i)

k at time tk. When the 
number of particles is sufficient, the state estimation approximates the 
posterior probability density p(X1:k|Z1:k) of the unknown distribution X1: 

k. In the initialization phase, it is necessary to generate a series of par-
ticles on account of prior knowledge, that is, X(1:N)

0 ̃p(X0). Considering 
the motion state of a single target in a 2-D coordinate system, the par-
ticles at the initial moment could be generated with random noise, i.e., 
[

x̂i
0

ŷi
0

]

=

[
x0
y0

]

+ ϕ (13)  

where 
[
x0, y0

]T is the initial position of the target to be tracked, and ϕ =
[
ϕx,ϕy

]T is Gaussian noise in the horizontal and vertical axes, that is, ϕx,

ϕy ∼ N
(
0, γ0

2). 
Prediction: Based on the Bayesian recursive estimation criterion, to 

estimate the posterior probability of the current state, the prior proba-
bility of the current moment needs to be calculated in advance, based on 
the posterior probability of the previous moment. Thus, Monte Carlo 
method is taken into consideration. A set of random weighted particles 
(samples) are collected from the state space of the known distribution to 

replace the posterior probability, i.e., 
{

X(i)
k

}
∼ q

(
X(i)

k

⃒
⃒X(i)

k− 1, Zk
)
. 

Update: In this stage, the particles are resampled and the weighted 
average of all particles is chosen as the output of overall state estimation. 
The initial weight of the particle is assigned as 1/N, and it is updated by 
the following equation: 

w(i)
k ∼ w(i)

k− 1

p
(

Zk

⃒
⃒
⃒X(i)

k

)
p
(

X(i)
k

⃒
⃒
⃒X(i)

k− 1

)

q
(

X(i)
k

⃒
⃒
⃒X(i)

k− 1,Zk

) (14)  

where q(⋅) denotes the importance probability density, and it is gener-
ally represented as the transition prior probability density function, that 

is, q
(

X(i)
k

⃒
⃒
⃒X(i)

k− 1,Zk

)
= p

(
X(i)

k

⃒
⃒
⃒X(i)

k− 1

)
(Xiao and Pan, 2020). Furthermore, 

the weights of these particles are normalized, w̃(i)
k = w(i)

k /
∑N

i=1w(i)
k . 

Finally, the approximated posterior probability density function can be 
expressed as: 

p(Xk|Z1:k) ≈
∑N

i=1
w̃(i)

k δ
(

Xk − X(i)
k

)
(15)  

where w̃(i)
k and X(i)

k denotes the weight and state information of particle i 
at time tk, and δ(⋅) is Dirac function. When N approaches infinity, the 
approximation will gradually converge to the true posterior density. 

3.1.2. Error ellipse constraint 
Based on the above considerations, we introduce the rules of error 

ellipse constraints to the implementation of resampling. When per-
forming interval estimation on the scale s (that is, the value range of the 
estimation scale), if a small probability β is given in advance, an interval 
(s1, s2) can be found to satisfy: 

Pr(s1 < s < s2) = 1 − β (16)  

The interval (s1, s2) is the confidence interval of the scale s, where s1 and 
s2 are called confidence limits (or critical values). The probability β 
represents the significance level (or risk), and 1 − β denotes the confi-
dence level (or confidence). We use the symbol α to express the confi-
dence probability, i.e., α = 1 − β. In 2-D/3-D parameter estimation (such 
as 2-D/3-D target tracking), this confidence interval could be formalized 

Fig. 2. Bayesian graph model of multi-target cooperative: the spatial-temporal 
cooperative is shown by two nodes. 
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as an error ellipse/ellipsoid. 
In this paper, we consider the 2-D covariance matrix of N particles at 

time tk: 

C =

[
cov(x, x) cov(x, y)
cov(y, x) cov(y, y)

]

(17)  

where cov(x, x) and cov(y, y) are the variance in the x-axis and y-axis 
directions, respectively. The covariance could be obtained: 

cov(x, y) = E[(x − E(x) )(y − E(y) ) ] (18)  

If x is positively related to y, then y and x are also positively correlated, i. 
e., cov(x, y) = cov(y, x). Therefore, the covariance matrix is always a 
symmetric matrix, whose values on the diagonal are variances, and 
those on the off-diagonal are covariances. Then, equation of the ellipse 
whose center is not at the origin point could be expressed as: 
(
x − xp

)2

λ1
+

(
y − yp

)2

λ2
= s (19)  

where λ1 and λ2 are the maximum and minimum eigenvalues corre-

sponding to the covariance matrix, respectively. 
(

xp, yp

)
is the estimated 

center position, and s is the scale of error ellipses. When the error ellipse 
is tilted relative to the coordinate system, the tilt angle φ of the x-axis 
and y-axis could be obtained from the following equation: 

φ = arctan
(

λ1(y)
λ1(x)

)

(20)  

Furthermore, we obtain the error ellipse constraint represented by the 
rotated coordinate (x′

, y′

) and the angle φ as: 
( (

x′

− xp
)
cos φ +

(
y′

− yp
)
sin φ

)2

λ1

+

(
−
(
x′

− xp
)
sin φ +

(
y′

− yp
)
cos φ

)2

λ2
≤ s

(21)  

3.1.3. Resampling method 
Fig. 3 depicts the resampling process for particle sets based on error 

ellipse constraints. Two different confidence levels (confidence proba-
bilities) are established. During the resampling process, N potential 
particles are divided into three levels by geometric positions. The par-
ticles outside the outer ellipse are Nl negligible particles which would be 

discarded in later stages; the particles located in the middle of these two 
ellipses are regarded as the moderate particles, which would be 
reserved; Nh dominating particles inside the inner ellipse would be 
duplicated. During the duplication process, since the rounding operation 
may lead to the duplication times of particles to be less than 1, the first 
Nt = (Nl − ⌊Nl /Nh⌋Nh) dominating particles are duplicated 
c1 = ⌊Nl /Nh⌋ + 2 times, then the remaining Nh − Nt dominating parti-
cles are duplicated c2 = ⌊Nl /Nh⌋ + 1 times. After all particles have 
performed the duplication operation, the quantity of particles N still 
holds. The selected set of particles would also be used as initial input for 
the next iteration. 

During the resampling process, due to the discarding and duplication 
of some particles, the weights of the discarded are reassigned to those 
being duplicated. The weights are redistributed using the following 
equation: 

ŵ(i)
k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − M)
/
(Nl + Nh), s(i)k < s1

w̃(i)
k , s1 ≤ s(i)k ≤ s2

0, s(i)k > s2

(22)  

where M is the sum of the weights of moderate particles, Nl and Nh 
are respectively the number of negligible particles and dominating 
particles. s(i)k represents the distance between the particle and the 
prediction center at time k. The state estimation result is updated 
by weighted average, namely 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk =
∑N

i=1
ŵ(i)

k x(i)k

yk =
∑N

i=1
ŵ(i)

k y(i)k

(23)  

The error ellipse resampling algorithm is described in Algorithm 1. 

Algorithm 1 
Error-Ellipse-Resampling Algorithm (EER)  

Require: 
[{

Xi
k,wi

k
}N

i=1 , (xp, xp)
]
← status, weight information  

Ensure: 
[{

X̂
i
k, ŵ

i
k

}N

i=1
, X̂

]

← status, weight, estimated value  

for i ← 1, N do 
si
k←ellipse(Xi

k, (xp,yp)) ▹ Equation(21);  
if si

k > s1 then  
indexl(Nl) = i; 
Nl = Nl + 1; 

else if si
k < s2 then  

indexh(Nh) = i; 
Nh = Nh + 1; 

else 
M = M+ w̃i

k;  

X̂
index(n)
k = Xi

k, ŵ
index(n)
k = wi

k;  
n = n + 1; 
X̂ = X̂ + wi

k*Xi
k;  

end if 
end for 
Nt = Nl − ⌊Nl /Nh⌋*Nh;  
weight = (1 − M)/(Nl + Nh);  
for j ← 1, Nh do 

while j ≤ Nt do 
c(j) = ⌊Nl /Nh⌋+ 2;  

for do l←1, c(j)

X̂
index(n)
k = Xindexh(j)

k , ŵindex(n)
k = weight;  

n = n + 1; 
X̂ = X̂ + weight*Xindexh(j)

k ;  
end for 

end while 
c(j) = ⌊Nl /Nh⌋+ 1;  

(continued on next page) 

Fig. 3. An example of a typical resampled particle screening process: a) shows 
the initial distribution of the particles. b) two different confidence level ellipse 
(50% and 12.5% confidence probability respectively) based on the covariance 
matrix of the particle set. c) Screening results for particles of different levels. 
The red particles could be removed and the bold points are copied, to 
emphasize the high weight particles and reduce the low weight ones. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Algorithm 1 (continued ) 

for do l←1, c(j)

X̂
index(n)
k = Xindexh(j)

k , ŵindex(n)
k = weight;  

n = n + 1; 
X̂ = X̂ + weight*Xindexh(j)

k ;  
end for 

end for  

3.2. Distance constrained optimization 

In this section, we fuse spatial distance measurements between mo-
bile nodes for cooperative estimation. According to the Bayesian 
recursive criterion, when the previous estimates are biased, the state 
estimates at the subsequent moments will be affected. In the spatial 
cooperation, Bayesian optimization under the distance constraint is used 
to optimize the position state of the target node. As shown in Fig. 4, we 
focus on the 2-D coordinate state information. The PF will output the 
initial mean value and covariance of position state. This information will 
be used as prior knowledge of Bayesian optimization estimation. Under 
the distance constraint of given node position, the posterior is calculated 
by convex combination approximation of the integral conditional mean 
and covariance to complete the optimization of spatial cooperative 
constraints. 

3.2.1. Bayesian optimization under distance constraints 
During dynamic estimation in the time domain, the particle filter 

algorithm will continuously yield the mean estimation of state variables. 
The state estimation value 

{
Xk,1,Xk,2⋯Xk,Na

}
of Na nodes at each 

moment could be used as prior knowledge for optimization. Ideally, the 
target node n could receive the measurements Zk =

{
Zk,nj : j ∈ Na/{n}

}

from other Na − 1 neighbor nodes, and node n will select the value 
within the distance constraint range from these measurements for the 
next optimization, that is, satisfying the distance constraint c : ‖ρX‖ ≤

Zk,ηj, where ρ = [I2, − I2,02×4]. 
Furthermore, we define the joint state of node n and node j at time k 

as κk =
[
Pk,n, Pk,j

]T. Since the estimated value in time series is calculated 

by the weighted average of particles, then the mean value mk =

[
mk,n,mk,j

]T and covariance Ck =
[
Ck,n,Ck,j

]T of the joint state at time k 
will also be used as prior knowledge of the optimization process. So far, 
as long as the posterior probability density under the given distance 
constraint c is calculated, the posterior mean and covariance of the 
target state could be obtained. 

In order to simplify the calculation, we firstly introduce a new state 
vector z = Tκ ∈ R4, where z is a Gaussian distribution with a mean of mz 
and a variance of Cz, i.e., z̃N(mz,Cz), and κ indicates the joint state 
vector, namely κ = [P1,P2]

T. The state vector z is given by a reversible 
linear transformation and consists of two sub-vectors z1 = P1 − P2 and z2 
= P1 + P2. Here, the simplified symbols P1 and P2 represent the position 
states of the two mobile nodes before optimization, respectively. We 

could verify that T =

[
I2 − I2
I2 I2

]

. Further reasoning leads to mz = Tmκ 

and Cz = TCκTT. Then, we can obtain new constraints c : ‖z1‖ ≤ Z, where 
the distance constraint is only related to z1. 

The calculation of posterior m̂κ|c and Ĉκ|c requires two steps. Firstly, 
perform an affine transformation to map the infinite integration area to 
a finite area, so as to reduce the integration dimension. Therefore, the 
transformation process will simplify the calculation of conditional mean 
and covariance. Secondly, the approximate calculation of integrals 
performs deterministic sampling method. 

3.2.2. Affine transformation 
As to the analysis above, we need to calculate the posterior mean m̂κ|c 

and covariance Ĉκ|c. Moreover, we conclude that m̂κ|c = T− 1mz|c and 
Ĉκ|c = T− 1Cz|cT− T . Thus, we could turn the problem into solving mz|c and 
Cz|c with transforming by affine transformation: 

mz2 |z1 = uz2 + Az1

Cz2 |z1 = Cz2 − ACT
z2z1

(24)  

we could obtain the mean value mz2 |z1 and covariance Cz2 |z1 of the con-
ditional probability density function p(z2|z1). The intermediate variables 
in the above equation are expressed as A = Cz2z1 C− 1

z1 
and uz2 = mz2 −

Amz1 , respectively. Let mz|c =
[
mz1 |c,mz2 |c

]T, then the conditional mean 
mz1 |c is denoted as: 

mz1 |c =

∫

z1

z1p(z1|c)dz1 (25)  

Since z1 is given the norm ‖z1‖ provides no additional information, then 
the pdf p(z2|z1, ‖z1‖) is identical to p(z2|z1). The same goes that given z1 
a bound on the norm ‖z1‖ ≤ Z yields no additional information. Hence p 
(z2|z1, c) = p(z2|z1) for all valid z1, i.e., ∀z1 ∈ {z1 ∈ R2 :

⃦
⃦z1

⃦
⃦≤ Z}. The 

conditional mean mz2 |c is denoted as: 

mz2 |c =
∫

z1

[
∫

z2

z2p(z2|z1)dz2

⎤

⎦p(z1|c)dz1

=
∫

z1

(uz2 + Az1)p(z1|c)dz1

= uz2 + Amz1 |c

(26)  

and the conditional covariance matrix is denoted as: 

Cz|c = Bz|c − mz|cmT
z|c (27)  

where the covariance matrix Bz|c is denoted as 
[

Bz1 |c Bz1z2 |c
Bz1z2 |c Bz2 |c

]

. The 

covariance of the posterior probability p(z1|c) could be denoted as: 

Bz1 |c =

∫

z1

z1zT
1 p(z1|c)dz1 (28)  

Fig. 4. Schematic diagram of distance constraint optimization. The target 
node’s location information is indicated by the mean ml and the covariance Cl. 
The confidence probability corresponding to the ellipse is set as 50%. The po-
sition and error ellipse before optimization are expressed as diamond points and 
solid ellipses. Correspondingly, the optimized position is expressed as a circular 
dot and a dotted ellipse. Using the error ellipse to constrain the position would 
get an estimation more closer to the true position. 
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Therefore, the covariance of p(z2z1|c) and p(z2|c) could be obtained 
according to the affine transformation: 

Bz1z2 |c =
∫

z1

z1

⎡

⎣
∫

z2

zT
2 p(z2|z1)dz2

⎤

⎦p(z1|c)dz1

= mz1 |cu
T
z2
+ Pz1 |cA

T

(29)  

Bz2 |c =
∫

z1

[
∫

z2

z2zT
2 p(z2|z1)dz2

⎤

⎦p(z1|c)dz1

=
∫

z1

(
Cz2 |z1 + mz2 |z1 mT

z2 |z1

)
p(z1|c)dz1

= Cz2 − ACT
z2z1

+ uz2 uT
z2
+ uz2 mT

z1 |cAT + Amz1 |cu
T
z2
+ ARz1 |cA

T

(30)  

Therefore, we only need to calculate the integral (25) and (28) corre-
sponding to p(z1|c), and we can find the solutions of the posterior mean 
m̂z|c. Thus, covariance Ĉz|c through affine transformation without 
directly solving the posterior probability p(X|c). 

3.2.3. Integral approximation 
In order to avoid calculating complex numerical integration, we use 

a convex combination to approximate the conditional mean and 
covariance: 

m̂z1 |c ≃
∑2Λ

i=0
w(i)z(i)1

B̂z1 |c ≃
∑2Λ

i=0
w(i)z(i)1

(
z(i)1

)T
(31)  

where z(i)1 and w(i) denotes sampling points and corresponding weights, 
and n is the dimension of the state variable (Candy, 2016). When the 
probability mass α of the sampling point z(i)1 is within the constraint 
range, the approximated value holds. Otherwise, resample the points to 
ensure that the approximated average value falls within the convex 
boundary, thereby reducing the dispersion. Therefore, parameter α de-
termines the effectiveness of sampling points. Select 2n + 1 points by the 
following equation: 

h(i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mz1 , i = 0

mz1 + s1/2
α

[
C1/2

z1

]

i
, i = 1,…,Λ

mz1 − s1/2
α

[
C1/2

z1

]

i
, i = Λ + 1,…, 2Λ

(32)  

where Λ indicates the dimension of position variable, sα is the confidence 
scale that satisfies Pr(s ≤ sα) = α and s = (z1 − mz1 )

TC− 1
z1
(z1 − mz1). This 

is equivalent to the confidence scale ηα of the confidence ellipse, which is 
directly affected by the confidence level. 

The deterministic sampling method will select 2Λ + 1 sampling 
points, and the sampling points that violate the constraint condition c 
will be orthogonally projected onto the constraint boundary. Then, we 
use the following equation for screening: 

z(i)1 =

⎧
⎪⎨

⎪⎩

h(i), if
⃦
⃦h(i)

⃦
⃦ ≤ Z

Z
⃦
⃦h(i)

⃦
⃦

h(i), other
(33)  

where i ¼ 0, …, 2Λ. The weights of sampling points will be re-
generated based on the following criterion: 

w(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
2
sα
, i = 0

1
Λsα

, i = 1,…, 2Λ
(34)  

The estimated values of the posterior mean m̂z1 |c and covariance 

B̂z1 |c could be obtained by weighting the resampled points 
{
z(i)1

}2Λ
i=0. 

The effectiveness of resampling under distance constraint is dis-
played in Fig. 5. The description of spatial cooperative constrained 
optimization algorithm is shown in Algorithm 2. 

Algorithm 2 
Spatial Cooperative Constrained Optimization Algorithm (SCCO)  

Require: {m1 = [p1, p2]
T
,C1 = [C1,C2]

T
, Z12}← Joint state mean and covariance, 

distance measurement  
Ensure: {m̂1, B̂1, m̂2, B̂2}← Posterior state mean and covariance  

if ‖m1 − m2‖ ≥ Z12 then  
1.Calculate the converted covariance Cz through Cl 
2.Calculate the conditional covariance Cz1 and Cz2 in equation (27).  
3.Calculate the intermediate variable A and uz2 of the affine transformation  
for i ← 0, 4 do 

h(i) ← sample(Λ = 2) ▹ Equation (32) 
if h(i) > Zk,nj then 

z(i)1 ←norm
(

h(i)
)

;  

else 
z(i)1 = h(i);  

end if 
if i = 0 then 

w(i) = 1–2/sα; 
else 

w(i) = 1/Λsα; 
end if 

end for 
for i ← 0, 4 do 

m̂z1 |c = m̂z1 |c + w(i)z(i)1 ;  

B̂z1 |c = B̂z1 |c + w(i)z(i)1
(
z(i)1

)T
;  

end for 
end if  

3.3. Cooperative constrained particle filtering 

When particle filtering is performed for state estimation in time se-
ries, we firstly conduct a rough estimation of the target state based on 
the center point of the particle set. Then, we adopt two error ellipses 
with different confidence levels (s1, s2) to resample the particles. After 

Fig. 5. A diagram of error ellipse resampling under distance constraints: solid 
ellipse represents the error ellipse before the constraint optimization, and circle 
points represent the sampling points before sampling. If these sampling points 
are outside the distance constraint (black dotted circle), then they will be 
mapped to the boundary of the constraint circle. The resampled points are 
shown as red plus signs in the figure. The error ellipse area after optimization is 
smaller, and the center of the ellipse (red triangle) is closer to the constraint 
boundary than that before optimization (black cross). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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the resampling stage, spatial cooperative constrained optimization is 
used to drive the estimated value closer to the true position, that is, the 
optimized position estimate is used to update the original center point. 
Furthermore, the filter estimation at the next moment will benefit from 
the spatial information at the previous moment, so as to achieve coop-
erative tracking of spatial-temporal fusion. The overall description of 
our proposed cooperative constrained PF is illustrated in Algorithm 3. 

Algorithm 3 
Multi-target cooperative particle filter algorithm (CEER-PF)  

Require: [X0]← Initial position  
Ensure: {m̂1}

K
k=1← State estimate  

for k ← 0, K − 1 do 
if k = 0 then 

Xi=1:N
0 ̃N(X0,ϕ);  

else 
for do i←1,N  

Xi
k←f1

(
Xi

k− 1
)

% State transition  
wi

k←f2
(
Zi

k
)

% Computational likelihood  
end for 
{

{X̂
i
k, ŵ

i
k}

N

i=1 , X̂k

}

←
{{

Xi
k,wi

k
}N

i=1 , (xp, xp)
}

▹Algorithm1  

m1 = Xk,C1 = cor
(

X̂
1:N
k

)
← Mean and covariance of particles at the current 

moment  
ml = [m1,m2]

T
,Cl = [C1,C2]

T← Spatial status information  
(m1,m2)←SCCO(ml ,Cl ,Z12) ▹Algorithm2  
(xp, yp)←f1(m1)← Update estimate center  

end if 
end for  

4. Theoretical performance analysis 

In this section, we carry out the theoretical derivation to prove the 
validity of the proposed algorithm. Firstly, posterior Carmér-Rao Lower 
Bound (PCRLB) of multi-target cooperative tracking accuracy is derived. 
Next, the complexity analysis of both proposed and comparative 
methods are conducted. 

4.1. Posterior Crameŕ Rao Lower Bound 

The posterior Crameŕ Rao Lower Bound (PCRLB) (Win et al., 2018) is 
defined as the inverse of the Fisher information matrix (FIM), which 
provides the theoretical lower bound of the unbiased estimated vari-
ance, i.e., 

E
{(

X̂ k − XK

)2
}

≥ J(Xk)
− 1 (35)  

Considering the information in time series, the joint probability density 
function is: 

p
(

d̂k,1, d̂k,2, θ̂k, X̂ k

)
=

{
∏Na

j=1
p
(

d̂k,1

⃒
⃒
⃒Xk

)
}

p
(

d̂k,2

⃒
⃒
⃒Xk− 1,Xk

)
p(θ̂|Xk− 1,Xk)

(36)  

where the simplified symbols d̂k,1 and d̂k,2 represent the inter-node 
distance measurement d̂k,nj and the step measurement d̂k,n, respec-

tively. p
(

d̂k,nj

⃒
⃒
⃒Xk

)
, p

(
d̂k

⃒
⃒
⃒Xk− 1,Xk

)
and p(θ̂|Xk− 1,Xk) could be obtained 

from Equation (3) ~(7). According to the joint probability density 
function, we define the Fisher information matrix as: 

J(k)n,j = − E

⎡

⎣
∂ln p

(
d̂k,1, d̂k,2, θ̂k, X̂ k

)

∂X̂k,n, ∂X̂k,j

⎤

⎦, i, j ∈ Na (37)  

When the target node travels at a constant speed, the dynamic model (2) 

can be expressed as: 

X(k) = F(k − 1)X(k − 1) + u(k − 1) (38)  

where F(k) = diag(F1(k), F2(k),…, FNa (k) ) is the block diagonal state 
transition matrix. u is an independent process noise vector, and the 
covariance matrix Q(k) = diag

(
Q1(k),Q2(k),…,QNa (k)

)
is given. Thus, 

the vector X(k) =
[
XT

1(k),X
T
2(k),…XT

Na
(k)

]T 
reflects the augmented state 

information of all mobile nodes. Then, the recursive calculation of FIM is 
expressed as (Win et al., 2018): 

J(k) = H22
k− 1 − H21

k− 1

(
J(k − 1) + H11

k− 1

)− 1H12
k− 1 + Jz(k) (39)  

where the matrix H and Jz(k) are described as follows: 

H11
k− 1 = E

{
− ΔX(k− 1)

X(k− 1)ln p(X(k)|X(k − 1))
}

(40)  

H12
k− 1 = E

{
− ΔX(k)

X(k− 1)ln p(X(k)|X(k − 1))
}
=

(
H21

k− 1

)T (41)  

H22
k− 1 = E

{
− ΔX(k)

X(k)ln p(X(k)|X(k − 1))
}

(42)  

Jz(k) = E
{
− ΔX(k)

X(k)ln p(Z(k)|X(k − 1))
}

(43)  

where Δb
a represents the second-order derivative of vectors a and b, 

namely Δb
a = ∇a∇b. When the state transition model (2) is linear 

Gaussian, the FIM recursive calculation form described by Equation (39) 
could be simplified as: 

J(k) =
[
Q(k − 1) + F(k − 1)J(k − 1)− 1F(k − 1)T ]− 1

+ Jz(k) (44)  

Since the distance measurement are generated by the mobile node 
independently, we could obtain the representation of the matrix Jz(k)
under the assumption of distributed Gaussian noise, namely 

Jz(k) =

⎡

⎢
⎢
⎣

R(1, 1) R(2, 1) ⋯ R(Na, 1)
R(1, 2) R(2, 2) ⋯ R(Na, 2)

⋮ ⋮ ⋱ ⋮
R(1,Na) R(2,Na) ⋯ R(Na,Na)

⎤

⎥
⎥
⎦ (45)  

where the sub-matrix R(n, j) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

χxn
xj

χyn
xj

0 0
χxn

yj
χyn

yj
0 0

0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. The parameters χxn
xj

, 

χyn
yj , and χxn

yj 
are respectively represented as: 

χxn
xj
= −

1
σ2

nj

(
xn − xj

)2

d2
nj

ψnj (46)  

χyn
yj
= −

1
σ2

nj

(
yn − yj

)2

d2
nj

ψnj (47)  

χxn
yj
= −

1
σ2

nj

(
xn − yj

)(
yn − yj

)

d2
nj

ψnj (48)  

In above equations, dnj is the inter-node true distance, and σ2
nj is the 

variance of ranging noise. ψnj is an indicator function, which is set as 
0 when n is equal to j, and 1 in all other cases. The FIM at the initial 
moment could be obtained from the ranging information, namely J(0) =

Jz(0). In the next section, we will take advantages of this derived PCRLB 
to compare with the statistical results of numerical simulations. 
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4.2. Complexity analysis 

In our proposed cooperative tracking schema, the system overhead 
mainly consists of two parts, namely arithmetic computation in the local 
node and communication overhead between neighbors. 

In the respect of arithmetic computation in the local node, our pro-
posed algorithm needs to complete the screening and replication of N 
individual particles to realize the resampling optimization. Considering 
the extreme case, based on the proposed EER-PF resampling algorithm, 
if only particle screening operation is performed and no operations such 
as replication are performed, the complexity of the resampling algo-
rithm is O(N). In the worst case, it is necessary to copy c times for each 
particle, and the complexity of the resampling algorithm is O(N*c), 
where c is constant. Since the number of particles remains unchanged 
after resampling, the number of high-weight particles Nh will not exceed 
N/3, and the maximum number of replications will be no greater than 2. 
Thus, the complexity of the resampling algorithm remains as O(N). 
Then, we can know the overall complexity of the particle filter algorithm 
is O(N*Λ2), where N and Λ denote the quantity of the particles and 
dimension of the position variable respectively. 

For cooperative algorithms, additional spatial distance constraints 
are calculated, which is related to the number of target nodes Na in the 
whole network. UKF and our proposed algorithm are both determined 
by sigma point sampling. Therefore, the complexity of cooperative al-
gorithms is directly related to the state dimension Λ, which means that 
the complexity of proposed CEER-PF is O(Na*N*Λ2), while that of 
cooperative Unscented Kalman Filter (CUKF) is O(Na*Λ3). A detailed 
comparison of the algorithm complexity is shown in Table 2. 

In terms of broadcast communication between neighbors, all 
communication overhead is introduced by a distance ranging and paired 
status interaction. We currently adopt the principle of maximum 
matches number first, that is, the nodes that are not optimized will be 
paired first. To avoid multiple optimizations for a single node, if the 
current node is paired, we will mark its status as optimized. When it is 
paired again, only the optimization of the other node will be performed. 

Above all, theoretical analysis shows that the current strategy indeed 
works in improving the performance of the algorithm, with a reasonable 
computation and communication overhead. Further verification will be 
demonstrated in subsequent simulation experiments. 

5. Experiments and discussion 

In this section, we carried out numerical simulations and physical 
experiments to validate the effectiveness of our proposed algorithm. 
Firstly, numerical simulations are conducted for both single and multi- 
target tracking with the use of our proposed spatial-temporal con-
strained particle filtering method. Then, a typical physical scenario was 
set up to prove its effectiveness and wide application value. 

5.1. Experimental setup 

We carried out a random walk numerical simulation experiment 
based on MATLAB. The experimental computer runs Windows 10 Pro-
fessional Edition system, with 4-core i5 CPU and 16 GB memory. The 
experimental scene is set as 50 m*50 m, and the target node travels 100 
steps, starting from the initial position (0, 0). The trajectories of target 

node movements are recorded. The basic parameter settings are dis-
played in Table 3. Numerical simulations confirm the efficiency of the 
scheme put forth. 

5.2. Single target tracking 

Typical comparison algorithms are chosen as the non-resampling PF 
algorithm (NR-PF), unscented Kalman filter algorithm (UKF) (Lee and 
McBride, 2019), systematic resampling PF (SYR-PF) (Ala-Luhtala et al., 
2016), and stratified resampling PF (STR-PF) (Li et al., 2015). All al-
gorithms are performed and predict the position reached by each travel 
of the target node. Euclidean distances between the predicted position 
and the real position are counted. 

In order to verify that the particle filter algorithm based on error 
ellipse resampling (EER-PF) can effectively alleviate the problem of 
sample degeneracy and impoverishment, we performed a simulation of 
state estimation on a single-target random walking model. Fig. 6 shows 
the weight distribution of STR-PF, SYR-PF, and EER-PF. The particle 
weights are displayed in descending order, and the confidence interval 
of the EER-PF is (0.125, 0.5). 

It can be drawn from Fig. 6 that SYR-PF and STR-PF appear sample 
degeneracy and impoverishment at the beginning of the iteration. The 
number of particles occupying a larger weight and that of particles with 
a weight of 0, decreases as the iteration progresses, which verifies that 
SYR-PF and STR-PF only slow down sample degeneracy and impover-
ishment, but not completely. The EER-PF proposed in this paper has a 
relatively balanced weight distribution and effectively improves particle 
degradation and depletion problems. 

During the above experiment, tracking errors were also counted. The 
error is expressed as the Euclidean distance between the predicted po-
sition and the true position, which is defined as follows: 

e=
⃦
⃦
⃦P̂k − Pk

⃦
⃦
⃦

2
(49)  

We can draw the following conclusions from Fig. 7-(a). The positioning 
error of the target node shows a gradually increasing trend as the target 
moves over time, which to some extent verifies the cumulative error and 
drift problem of the sole IMU. Among them, the particle filter algorithm 
based on error ellipse resampling (EER-PF) has a smaller error growth 
rate than the others and is closer to the PCRLB, which also proves that 
EER-PF can suppress the cumulative error to a certain extent. Compared 
with SYR-PF and STR-PF, UKF has higher positioning accuracy, but it is 
slightly inferior to EER-PF. 

To further verify the effectiveness and stability of the EER-PF algo-
rithm in single target tracking, the root mean square error and experi-
mental variance of the positioning algorithms are counted. The root 
mean square error (RMSE) is defined as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K − 1

∑K

k=1
(e)2

√
√
√
√ (50)  

From Fig. 7-(b), we could see that the resampled algorithm curve is 

Table 2 
A detailed comparison of the algorithm complexity.  

Algorithms Complexity 

SYR-PF O(N*Λ2) 
STR-PF O(N*Λ2) 
EER-PF O(N*Λ2) 
CUKF O(Na*Λ3) 
CEER-PF O(Na*N*Λ2)  

Table 3 
Experimental parameter settings.  

Parameter Numerical value 

Sampling interval ts 1(s) 
Acceleration a 0(m/s) 
Process noise variance σ2 0.1(m2) 
Initial noise variance γ2

0  0.1(m2) 

Step noise variance γ2
1,k  0.5(m2) 

Angle noise variance γ2
2,k  10◦

Distance measurement noise variance γ2
3,k  0.5(m2) 

Confidence probability (α1, α2) (0.125, 0.5) 
Number of particles N 4000  
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obviously lower than that of non-resampled, which is closer to the true 
value. This is probably caused by the fact that the posterior distribution 
can be obtained using Monte Carlo sampling. Besides, the error distri-
butions of SYR-PF and STR-PF are very similar, while the performance of 
STR-PF is slightly better than that of SYR-PF due to the diversity of 
particles screened by stratification. Anyway, EER-PF holds the best 
performance. 

Fig. 8 shows cumulative distribution function curve of the root mean 
square error, and various resampling algorithms are repeated 100 
random walk experiments. There is a 97% probability that the posi-
tioning accuracy of error ellipse resampling particle filter (EER-PF) 
proposed in this paper is less than 2 m, and there is a 50% probability 
that it is less than 1 m. 

In order to show how confidence probabilities impact on the posi-
tioning accuracy in proposed algorithm, 6 sets of confidence intervals 
are selected for simulation of single target random walking. The posi-
tioning accuracy of EER-PF under different confidence probabilities is 
represented by the root mean square error as shown in Table 4, from 
which the following conclusions could be drawn:  

1) If the overall confidence probabilities are smaller, that is, the number 
of negligible particles outside the outer ellipse is larger, the posi-
tioning accuracy of EER-PF is better. This is because the weights of 
negligible particles are redistributed to dominant ones, which re-
alizes the optimization of particle screening.  

2) If the span of the confidence interval is larger, that is, the number of 
moderate particles between the two ellipses is larger, the algorithm 
can provide higher positioning accuracy. Generally, it can be seen 
that setting the confidence interval to (0.125, 0.5) is a more appro-
priate choice. 

5.3. Multiple targets tracking 

Cooperative tracking can effectively integrate the information of a 
single target node to achieve higher-precision tracking. In this paper, we 
proposed a constrained particle filter method for cooperative tracking to 
reduce the impacts of cumulative errors caused by inertial 
measurements. 

In order to verify the effectiveness and advancement of the error- 
ellipse-resampling-based particle filter for cooperative tracking(CEER- 
PF), we use CEER-PF and Unscented Kalman Filter for cooperative 
tracking(CUKF) to repeat random walk experiments 100 times and 
compare with the PCRLB under the same measurement noise. The mean 
value of the root mean square error for cooperative tracking is defined 
as: 

CRMSE =
1

Na

∑Na

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K − 1

∑K

t=1
(e)2

√
√
√
√ (51)  

The statistics of the experimental results are shown in Fig. 9-(a). The 
following conclusions can be obtained from the figure: 

Fig. 6. Particle weight distribution of different algorithms.  

Fig. 7. Statistical results of typical single target tracking. (a) A typical error distribution without cooperative measurements. (b) Statistical distribution of RMSE.  

Fig. 8. Cumulative distribution function (CDF) curves of RMSE with non- 
cooperative algorithms. 

Table 4 
The influence of confidence interval on algorithm accuracy.  

Confidence interval Tracking accuracy 

(0.6,0.8) 2.30 
(0.4,0.6) 1.70 
(0.4,0.8) 1.86 
(0.25,0.5) 1.16 
(0.125,0.5) 1.14 
(0.125,0.5) 1.05  
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1) Generally, the errors of both cooperative algorithms are relatively 
stable, and no obvious error accumulation is observed. This to some 
extent verifies the effectiveness of the algorithm proposed in this 
paper on restraining the influence of accumulated errors.  

2) CEER-PF has a higher positioning accuracy than CUKF, and it is 
closer to the cooperative PCRLB curve, that is, closer to the optimal 
value of the theoretical situation. Among them, the positioning ac-
curacy of the CUKF algorithm can reach 0.39 m, while CEER-PF 
could reach to 0.24 m. 

Fig. 9-(b) shows the cumulative distribution function of different 
cooperative tracking algorithms. The positioning errors of CUKF and 
CEER-PF are both below 1 m. Among them, the probability that CUKF 
and CEER-PF algorithms are better than 0.5 m are respectively 76% and 
98%, respectively. This confirms that the CEER-PF algorithm proposed 
in this paper can achieve higher precision for multiple target tracking. 

Furthermore, we discuss how measurement noise and the number of 
particles impact on the performance of proposed algorithm. We selected 
3 sets of parameters for comparative experiments. Correspondingly, the 
measurement noise is step noise and angle noise, and the variance 
parameter (0.2, 10), (0.5, 10), (0.5, 20) are selected. CEER-PF is used to 
estimate the position of the target, and RMSE is counted to represent the 
positioning accuracy. The statistical results are shown in Fig. 10, from 
which following conclusions could be drawn:  

1) The blue curve in the figure is lower than the green one, which means 
that when the variance of the angle noise is unchanged, the smaller 
the variance of step length noise, the more accurate the positioning 
performance of CEER-PF.  

2) The green curve is lower than the red one, indicating that when the 
variance of step length noise is unchanged, the smaller the variance 
of angle noise, the more accurate the positioning performance of 
CEER-PF.  

3) As the number of particles increases from 500 to 6000, the execution 
time of the algorithm shows a linear growth trend. However, when 
the number of particles increases to 4000, the performance reaches 
its optimum. Thus, the choice of 4000 is more suitable in practice 
use, which could achieve as high accuracy as possible with accept-
able time overhead.  

4) Generally, one location estimate usually takes 0.1 ~0.2 s, which 
indicates that if the speed of moving target is 5 m/s (the normal 
walking speed of a pedestrian), the target moves only 0.5 ~1.0 m, 
which is quite reasonable for pedestrian tracking applications. If 80 
km/h (a fast-moving car), the target moves ~2 m during this period, 
which may still meet the requirements of most applications. 

Then, how target nodes’ number impacts on the positioning perfor-
mance for multi-target cooperative tracking is taken into consideration. 
The following conclusions could be drawn from the experimental results 

shown in Fig. 11:  

1) When target nodes’ number increases, the positioning error of both 
algorithms didn’t change dramatically. It indicates that both of them 
are suitable for large-scale deployment applications, while CEER-PF 
is significantly better than CUKF.  

2) The execution time of both algorithms increases with the number of 
target nodes, while that of CEER-PF is slightly higher than that of 
CUKF. However, it is completely acceptable for large-scale real-time 
applications. 

Table 5 counts the positioning accuracy of different algorithms, 
summarized as follows:  

1) The accuracy of EER-PF in single target positioning can reach 1.05 m, 
which have a 63% improvement in accuracy compared with STR-PF. 
The variance is smaller than the others as well, that is, the algorithm 
consistency is better. Due to the implementation of particle replica-
tion, the time consumption of EER-PF is slightly larger, but it can also 
meet the real-time requirements. 

2) Compared with CUKF, CEER-PF needs more time for particle calcu-
lation, but it can also to a great extent improve the positioning ac-
curacy on the basis of meeting the real-time requirements of the 
whole system. Compared with EER-PF without cooperation, its ac-
curacy performance has been improved by nearly 77%. Compared 
with CUKF tracking, it has progressed by about 38%. 

5.4. Practical use case 

In order to better verify the effectiveness and application value of our 
proposed method, a multi-target tracking experiment for cooperative 

Fig. 9. Statistical results of typical multiple target tracking. (a) Error distribution with cooperative measurements. (b) Cumulative distribution function (CDF) curves 
of CRMSE with cooperative algorithms. 

Fig. 10. Performance analysis of CEER-PF.  
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robots is carried out. The wheeled navigation robot adopted in 2D 
tracking applications, as shown in Fig. 12-(a), has a modular structure, 
mainly including the main board (provides a variety of interfaces, easy 
to expand), the core board (processor cortex-m4 STM32F405RG +
802.15.4 standard RF chip Atmel At86rf231), sensor board (integrated 
with a variety of sensors, including IMU and TOA module). The core 
board is connected with other equipment through the mainboard so that 
the system can be disassembled and expanded. 

A minimized sensor board is specially designed, as shown in Fig. 12- 
(b). It is aiming to collect spatial and temporal information during the 
moving process, which covers accelerated velocity, angular velocity, 
and the distances between targets. Among these all, distance informa-
tion is especially special when compared with other platforms. Each 
sensor board has a 6-axises sensor (MPU6050, which integrates a triaxial 

accelerometer and a triaxial gyroscope), a barometer sensor (MS5611), 
and a UWB-TOA ranging module (DWM1000). The MEMS sensors are 
connected to a microcontroller (STM32F103) for the sake of sampling 
efficiency at a rate of 10Hz. 

To verify the effectiveness, practical experiments are conducted to 
compare the proposed method with above-mentioned state-of-the-art 
methods. A total of 10 navigation robots are programmed to travel 
randomly by applying the collision-avoidance algorithm (Thrun, 2002), 
and each robot maintains a distance-ranging frequency of once a second 
with its neighboring nodes. A high precision optical motion tracking 
system (Mars 2H) (https://www.nokov.com/en/, 2020) is deployed so 
as to provide the ground truth measurements. Considering the size of the 
tracking target and the deployment requirements of optical devices, an 
open filed covered 10 m*10 m is chosen as a testing scenario. 

As shown in Fig. 13, EER-PF and CEER-PF, as well as state-of-the-art 
algorithms are tested to show the superiorities of our proposed method. 
The results are similar to those in the numerical simulation, namely 1) 
the accuracy of cooperative algorithms is better than those of non- 
cooperative ones. 2) CEER-PF performs better than the state-of-the-art 
CUKF (Chen et al., 2019b). 3) Although the experimental results of 
simulation and actual verification are very similar, a slightly larger error 
is introduced by physical tests, possibly caused by unpredictable envi-
ronmental noise and hardware control parameters. 

6. Conclusion 

In this paper, we proposed a layered resampling algorithm based on 
error-ellipse constraints. According to the error distribution character-
istics of particles, error ellipses with different confidence probabilities 
are established to achieve layered screening. Compared with other 
resampling algorithms, the error-ellipse-resampling algorithm proposed 
in this paper could effectively alleviate sample degeneracy and impov-
erishment, thereby improving the positioning accuracy. 

In order to further solve the accumulative errors problem faced by 
sole IMU, a multi-target cooperative constrained particle filter algorithm 
is proposed. Combined with the instantaneous, high-precision, and non- 
accumulative characteristics of TOA-based distance measurement, the 
estimated results in time series are used as prior knowledge of spatial 
cooperative optimization. Based on the constrained conditions of inter- 
node distance measurements, the optimized posterior position estima-
tion is obtained to achieve spatial-temporal fusion in cooperative 
tracking. Experimental results verify that CEER-PF could greatly 
improve the positioning performance, and effectively eliminate the 
accumulative errors. Compared with the non-cooperative method, its 
positioning performance has been improved by nearly 77%. Compared 
with state-of-the-art CUKF, it has progressed by about 38%. 

Furthermore, in this paper, the pair-wise optimization for two nodes 
is adopted. To avoid multiple optimizations for a single node, if the 

Fig. 11. The number of Target nodes’ influence on the localization perfor-
mance of various algorithms. 

Table 5 
Positioning accuracy of various algorithms (N = 4000).  

Algorithms Maximum 
variance (m2) 

Minimum 
variance (m2) 

Average 
error (m) 

Execution 
time (s) 

NR-PF 35.41 4.70 4.15 0.10 
STR-PF 21.89 1.19 2.87 0.12 
SYR-PF 30.13 3.11 3.67 0.15 
EER-PF 5.63 0.17 1.05 0.22 
CUKF 3.41 0.22 0.39 0.18 
CEER-PF 0.29 0.03 0.24 0.26  

Fig. 12. Experimental Platform Settings. (a) The wheeled navigation robot 
adopted in this paper. (b) A minimized sensor board specially designed for 
targets localization. Fig. 13. Experiment results of demonstrated practical use case.  
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current node is paired, we will mark its status as optimized. When it is 
paired again, only the optimization of another node will be performed. 
This leaves us some room for future studies. Joint optimization for all 
target nodes and consensus communication protocol may further 
improve the performance. 
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