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Error Constraint Enhanced Particle Filter Using
Quantum Particle Swarm Optimization
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Abstract—The position is one of the foremost imperative
properties of an object. The Inertial Measurement Unit (IMU)
development has enabled the system to continuously
decrease in size, reduce power consumption, and become
more and more universal. Although IMU meets the real-time
needs of the localization system, it faces accumulative error
and drifting problems. This paper presents an error constraint
enhanced particle filter algorithm using quantum particle
swarm optimization (EC-QPF), which achieves high-precision
position estimation of target tracking with IMU. First, we pro-
posed a quantum particle swarm optimization-based resam-
pling method taking the place of the traditional weight-based
resampling method in the particle filter, which avoids the
particle impoverishment problem and keeps the particles’
diversity. The theoretical foundation of error constraint was
raised applied to enhance the performance of the proposed
particle filter. The error constraint is established utilizing the known estimated center and confidence scale to achieve
particle screening based on the geometrical position of particles. Numerical experimental results show that the
proposed EC-QPF has a 67% improvement instead of other modified particle filters and more efficiently eliminates the
cumulative error. Furthermore, higher accuracy and stability are obtained under the exact condition, demonstrating better
performance than traditional particle filter methods.

Index Terms— Target tracking, particle filter, quantum particle swarm optimization, error constraint, accumulative
error.

I. INTRODUCTION

TARGET tracking has received extensive attention in
various fields such as intelligent traffic management

systems [1]–[3], and the central issue is the uncertainty of
the target motion. Global Positioning System (GPS) [4] has
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been widely used in outdoor navigation. Still, it cannot deliver
high accuracy in urban areas due to its weak signal blocked
by density building materials. Traditional Radio Frequency
Identification (RFID) [5] based positioning is an alternative
method in areas that cannot be covered by GPS signals,
including positioning technologies based on received signal
strength (RSS) [6], time of arrival (ToA) [7], time difference
of arrival (TDoA) [8] and Angle of Arrival (AoA) [9]. How-
ever, external infrastructure needs to be deployed in advance,
which makes them unsuitable for positioning estimation in
unknown areas [10]. Inertial navigation system (INS) that
utilizes the inertial measurement unit (IMU) has been used
in many commercial products due to its high accuracy and
convenience [11]. However, it faces the problems of accu-
mulative error and drifting, which to a great extent limits its
applications [12].

The filtering methods provide a reliable solution for improv-
ing the positioning accuracy of IMU [13]. Jonasson et al.
developed Extended Kalman Filter (EKF) [14] concepts to
estimate the vehicle position during a safe stop. In [15],
an improved Unscented Kalman Filter (UKF) is designed
for robust estimation of position. Liu et al. [16] proposed
an improved Particle Filter (PF) algorithm for reducing the
long-term accumulative error inherent in inertial positioning.
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However, they could only suppress the growth rate of the
cumulative errors to a certain extent but not eliminate it.
So far, there are still challenges in improving the accuracy
of positioning algorithms with filtering techniques. In prac-
tical applications, system models and measurement models
are usually non-linear. EKF estimates the mean and covari-
ance of the state by linearizing the state equation, but it is
accompanied by a tedious calculation process of the Jacobian
matrix [17]. Since errors are introduced by linearization,
UKF is still not suitable for higher-order non-linear system
models [18].

Compared with other filter methods, although PF would pay
more computational cost, it has better adaptability to non-
linear non-Gaussian systems [19]. The particle filter utilizes
the sequential Monte Carlo method to approximate posterior
distribution using a set of weighted samples, so theoretically,
it can represent any distribution. However, due to suboptimal
sampling, generic particle filter possesses some disadvan-
tages. (1) Particle impoverishment: this might happen when
the likelihood is very narrow or the likelihood lies in the
tail of prior distribution resulting in the overlap region of
likelihood and prior distribution is very small. Consequently,
only a small quantity of particles will have significant impor-
tance weights after the update process. Thus, the sample set
only contains few dissimilar particles, and sometimes they
will drop to a single sample after several iterations. As a
result, essential samples (reasonable hypothesis) may be lost.
(2) Sample size dependency: particle filter method highly
relies on an ample number of particles to approximate a
wide range of probability densities. Hence, a conflict arises
between computational efficiency and the accuracy of the
approximation. Thus, an estimation failure may occur if the
sample sets are inadequate, especially when the system’s initial
state is unknown.

To solve those problems, some researchers have adopted
analytical methods. Rudolph introduces an unscented particle
filter (UPF) by combining the unscented Kalman filter (UKF)
with a generic particle filter. The main idea of UPF is to use
UKF to get a better proposal function to improve the sampling
process. While UPF enhances the performance of generic par-
ticle filters by incorporating new observation into sampling to
avoid particle impoverishment, it sacrifices computational effi-
ciency. Other researchers tried to propose solutions to improve
resampling, such as stratified resampling [20], systematic
resampling [21], etc. Both resamplings are based on a layered
idea. After a series of iterations, the number of particles will
be reduced, resulting in most of the weights occupied by a
bit of them. Thus, the final state estimation results of general
methods are not always as satisfactory as expected. This paper
proposed an error constraint enhanced particle filter algorithm
using quantum particle swarm optimization to address these
issues. The error constraint is constructed based on confi-
dence probability, and the weight-based resampling method is
replaced with the quantum particle swarm optimization-based
resampling method. A particle set is implemented to solve the
problem of particle impoverishment and sample size depen-
dency. The main contributions of this paper are summarized as
follows:

• We proposed a quantum particle swarm optimization-
based particle resampling method, which avoids the
problem of particle impoverishment in the particle fil-
ter. We replaced the traditional weight-based resam-
pling method with a novel quantum particle swarm
optimization-based resampling method as the breakpoint
to differentiate the resampling process. The proposed
resampling method keeps the diversity of particles, which
enhances the performance of particle filter and decreases
the dependency of sample size.

• We established the theoretical foundation of error con-
straint to improve the accuracy of the proposed particle
filter. Based on the IMU estimated center and confi-
dence scale, error constraint with confidence probability
is established, and range constraint based on geometric
particle position is implemented, which benefits the accu-
racy and stability of target tracking estimation.

The remainder of this paper is organized as follows:
Section II thoroughly explains the key issues that need to be
solved in this paper. The related definitions are defined, and
the model description of the problem is established. Section III
describes the specific process of proposed error constraint
enhanced particle filter using quantum particle swarm opti-
mization. Section IV shows the results and discussion of
numerical experiments. Section V summarizes the paper.

II. PROBLEM STATEMENT

A. Dynamic Model
Consider a target node, represented by T , which is outfitted

with an inertial measurement unit. The measurement process
and state transition process are acted in discrete time tk, k =
0, 1, 2, . . . , K . Xk ∈ R

4 characterized as the state information
of node T at time tk , which incorporates coordinate vector

Pk=[xk, yk]T and velocity vector Vk=
[
vk

x , v
k
y

]T
. At that point,

Xk could be expressed as:
Xk = [Pk , Vk]T (1)

For the target tracking issue, we present the dynamic model
firstly. It is accepted that the motion law of node T conforms to
the dynamic random walk process [22]. In this way, we utilize
the first-order hidden Markov model for dynamic modeling,
and the state Xk−1 of node T at time tk−1 would contribute
to the state Xk at time tk , denoted as:

Xk = f (Xk−1, Ak−1, ξ) (2)

The acceleration at time tk−1 is notated as Ak−1 =
[ak−1

x , ak−1
y ]T , and the components in both directions are gen-

erated from {0,−g, g} randomly with probabilities modeled
as a random Markov jump [23]. The process noise generated
during a state transition is notated as ξ = [

ξx , ξy
]T , which

is Gaussian distributed noise with mean 0 and variance σ 2,
i.e., ξx , ξy ∼ N

(
0, σ 2

)
. The target node’s measurement is

expressed as a parameter related to the state. In real physi-
cal measurements, step size and heading angle measurement
could be obtained by integrating the acceleration and angular
velocity. In this paper, we assumed the noise of measurement
to be Gaussian distributed noise, which simplified the issue
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TABLE I
NOTATIONS

and facilitated the derivation of the formula. We will discuss
the mixed noise problem further in the following work. The
step size measurement of the target node could be simplified
as:

d̂k=dk + ε1,k, ε1,k ∼ N
(

0, δ2
1,k

)
(3)

where dk represents the actual step size of node T moving
from time tk to time tk+1, namely

dk=
√

(xk+1 − xk)
2 + (yk+1 − yk)

2 (4)

and ε1,k is Gaussian step size noise with mean of 0 and

variance of δ2
1,k . Then, the vector d̂=

[
d̂0, d̂1, · · · , d̂K−1

]T

reflects the step size measurement information. The heading
angle measurement is denoted as:

θ̂k=θk + ε2,k, ε2,k ∼ N
(

0, δ2
2,k

)
(5)

where θk is the actual heading angle, namely

θk= arctan
yk+1 − yk

xk+1 − xk
(6)

and ε2,k is Gaussian heading angle noise with mean of 0

and variance of δ2
2,k . Then, the vector θ̂=

[
θ̂0, θ̂1, · · · , θ̂K−1

]T

reflects the angle measurement information.

B. Review of Particle Filter
PF provides a strategy for recursively generating the pos-

terior probability density function, that is, employing a set of
particles to speak to the posterior probability distribution of the
state, which meets the thought of Monte Carlo sampling [6].
The standard handle of PF contains initialization, prediction,
and update.

Initialization: By and large, PF completes the estimation
of state Xk by updating a set of random measurements{

X (i)
k , w

(i)
k

}N

i=1
which comprises of N particles X (i)

k and

corresponding weight w
(i)
k at time tk . When the number

of particles is adequate, the state estimatation approximates
the posterior probability density p (X1:k |Z1:k) of the obscure
distribution X1:k . At this initialization stage, it is vital to
generate a series of particles on account of prior knowledge,
that is, X (1:N )

0 ∼ p (X0). Considering the motion state of a
single target in a two-dimensional (2-D) coordinate system,
the particles at the initial moment could be generated from
the initial position information and random noise, i.e.,[

x̂ i
0

ŷi
0

]
=

[
x0
y0

]
+ϕ (7)

where [x0, y0]T is the initial position of the target, and
ϕ=[

ϕx , ϕy
]T is Gaussian noise in the horizontal and vertical

axes, that is, ϕx , ϕy ∼ N
(
0, δ0

2
)
.

Prediction: Based on the Bayesian recursive estimation
model, to gauge the posterior probability of the current state,
the prior probability of the current moment ought to be
calculated in advance, based on the posterior probability of the
previous moment. Hence, Monte Carlo strategy is taken into
consideration. A set of random weighted particles (samples)
are collected from the state space of the known distrib-
ution to supplant the posterior probability, i.e.,

{
X (i)

k

}
∼

q
(

X (i)
k |X (i)

k−1, Zk

)
.

Update: At this stage, the particles are resampled, and the
weighted average of all particles is chosen as the output of
overall state estimation. The initial weight of the particle is
doled out as 1/N , and the following equations updates it:

w
(i)
k ∼ w

(i)
k−1

p
(

Zk |X (i)
k

)
p

(
X (i)

k |X (i)
k−1

)
q

(
X (i)

k |X (i)
k−1, Zk

) (8)
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where q(·) denotes the importance probability density, and it is
generally represented as the transition prior probability density
function, that is, q

(
X (i)

k |X (i)
k−1, Zk

)
= p

(
X (i)

k |X (i)
k−1

)
[24].

Furthermore, the weights of these particles are normalized,
w̃

(i)
k = w

(i)
k /

∑N
i=1 w

(i)
k . Finally, the approximated posterior

probability density function can be communicated as:

p (Xk |Z1:k) ≈
N∑

i=1

w̃
(i)
k δ

(
Xk − X (i)

k

)
(9)

where w
(i)
k and X (i)

k denotes the weight and state information
of particle i at time tk , and δ(·) is Dirac function. When N
approaches infinity, the approximation will gradually converge
to the true posterior density.

Because the proposal function of the generic PF is sub-
optimal, there are two severe problems in the traditional PF
method:

Problem 1 (Particle Impoverishment): This might happen
when the likelihood is very narrow or the likelihood lies in
the tail of prior distribution - the overlap region of likelihood
and prior distribution is very small. So, after the update
process, only a few particles will have significant importance
weights. Thus, the sample set only contains few dissimilar
particles, and sometimes they will drop to a single sample after
several iterations. As a result, essential samples (reasonable
hypothesis) may be lost.

Problem 2 (Sample Size Dependency): If the sample set
size is small, there might not have particles distributed around
the actual state. So after several iterations, it is tough for
particles to converge to the actual state. So it is challenging
to meet the particular need of generic PF with a small sample
set size. Nevertheless, there is no guarantee to meet the
real-time requirement of the system due to the decreasing
tremendously computation efficiency when we provide a large
enough sample set covering whole state space to ensure a
precise estimation.

To the best of our knowledge, many resampling methods
are utilized to solve particle impoverishment, which might
cause the loss of particle diversity. Furthermore, there is also
no strategy to overcome the sample size Dependency now.
We proposed a novel particle filter algorithm called error con-
straint enhanced particle filter using quantum particle swarm
optimization (EC-QPF) to solve these problems, detailed in
the next section.

III. METHODOLOGIES

This section introduces a new quantum particle swarm
optimization (QPSO) based particle filter method enhanced by
error constraint. As the breakpoint to keep the particle diver-
sity, we adopted the QPSO-based resampling method rather
than the weight-based resampling method into the update
stage of the particle filter. Moreover, it could also deal with
the sample size dependency problem of PF. We also applied
the method of error constraint for improving the accuracy
of the proposed algorithm. First, we will briefly introduce
how quantum particle swarm optimization works; then, we put
forward the theoretical foundation of error constraint; lastly,
we will present our EC-QPF detailly.

A. Quantum Particle Swarm Optimization (QPSO)
Particle swarm optimization (PSO) is an evolutionary com-

putation, which comes from studying the behavior of flocks
of birds. By designing a set of particles to simulate a flock
of birds, PSO aims to search for the global optimum through
mimicking the behavior of particles, where each particle rep-
resents a candidate solution has only two properties: position
xt

i and velocity v t
i , i = 1, 2, . . . , N . N represents the number

of particles, and t represents the t-th iteration of the algorithm.
Each particle searches for the optimal solution separately in
the search space, recorded as the current personal best value
pBestt

i . The pBestt
i is shared with other particles in the whole

particle swarm to find the optimal personal best value gBestt

as the current global optimal solution. To reach the final global
optimal solution, the particles move iteratively in the search
space, and the position xt

i and velocity v t
i of particle i at t-th

iteration are updated by the following formulas:
v t+1

i = ωv t
i +c1r1

(
pBestt

i −xt
i

)+c2r2
(
gBestt − xt

i

)
(10)

xt+1
i = xt

i +v t+1
i (11)

where ω ∈ [0, 1] is the inertia factor, c1 and c2 are two positive
constants named learning factor, r1 and r2 are two random
numbers in [0, 1].

Since PSO is only applicable to optimization of continuous
nonlinear functions, there are a number of PSO variants
proposed to solve binary optimization. And quantum particle
swarm optimization (QPSO) is a typical algorithm. In QPSO,
a swarm Q = {Q1, Q2, . . . , Qm} of m quantum particles is
maintained and evolves, where each quantum particle Qi is
a n-dimensional real-valued vector

(
qi

1, qi
2, . . . , qi

n

)
with qi

j ∈
[0, 1]. For each component qi

j (1 ≤ j ≤ n) of quantum particle
Qi , its value represents the probability that the associated
binary decision variable x j takes the value of 0.

Starting with a randomly initialized Qt in which the notation
t denotes the current number of iterations, the algorithm first
transforms each quantum particle Qi = (

qi
1, qi

2, . . . , qi
n

)
of

Qt into a binary particle Di = (
di

1, di
2, . . . , di

n

)
by applying a

random observation:

di
j =

{
1, if qi

j < rand(0, 1)

0, otherwise
(12)

where rand(0, 1) denotes a random real number in [0, 1]. Then
the quantum particle swarm updates by the following evolution
formulas at each iteration t :

Q̄t+1 = αD̄t + (1 − α)
(�e − D̄t ) (13)

Q̂t+1
i = αD̂t

i + (1 − α)
(
�e − D̂t

i

)
(14)

Qt+1
i = c1 Qt

i + c2 Q̂t+1
i + (1 − c1 − c2) Q̄t+1 (15)

where �e = (1, 1, . . . , 1) is a n-dimensional unit vector, D̂t
i

(1 ≤ i ≤ m) and D̄t denote respectively the personal and
global best solution for the binary particle Di at iteration t ,
and Q̂t+1

i (1 ≤ i ≤ m) and Q̄t+1 represent respectively the
personal and global historical best solution for the quantum
particle Qi at iteration t + 1. In these equations, α is called
control parameter satisfying α ∈ [0, 1]. In addition, c1 and
c2 satisfy c1 ∈ [0, 1], c2 ∈ [0, 1], and 0 < c1 + c2 < 1.
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The two latter coefficients represent the degree of belief in
oneself and the personal best, respectively, while (1 − c1 − c2)
represents the degree of belief in the global best quantum
particle. After a new quantum particle Qt+1

i is generated by
equations (13)-(15), Qt+1

i is used to replace Qt
i and is at the

same time transformed into a binary particle d , which is then
used to update D̄t+1

i and D̂t+1
i accordingly.

B. Error Constraint
When performing interval estimation on the scale s (that is,

the value range of the estimation scale), if a small probability
β is given in advance, the exact (1 − β)%-confidence interval
for the scale s is defined as the interval �s1, s2� [25]. s1 and s2
are the lower and upper confidence limits, respectively. Such
that the following holds true

Pr (s1 < s < s2) = 1 − β (16)

The probability β represents the significance level, and
1 − β represents the confidence level. We use the symbol α
to express the confidence probability, i.e., α=1 − β. In two-
dimensional or three-dimensional (2-D/3-D) parameter estima-
tion (such as target tracking), this confidence interval could be
exploited as an error constraint.

In this paper, we consider the two-dimensional (2-D) covari-
ance matrix of N particles at time tk :

C =
[

cov (x, x) cov (x, y)
cov (y, x) cov (y, y)

]
(17)

where cov (x, x) and cov (y, y) are the variance in the x-axis
and y-axis directions, respectively. The covariance could be
obtained:

cov (x, y) = E [(x − E (x)) (y − E (y))] (18)

If x is positively related to y, then y and x are also
positively correlated, i.e., cov (x, y) = cov (y, x). Therefore,
the covariance matrix is always a symmetric matrix. Then,
equation of the constraint represented as an elliptical range
could be expressed as:(

x − x p
)2

λ1
+

(
y − yp

)2

λ2
= s (19)

where λ1 and λ2 are the maximum and minimum eigenvector
corresponding to the covariance matrix, respectively.

(
x p, yp

)
is the estimated center position, and s is the scale of the ellipse.
When the ellipse is tilted relative to the coordinate system,
the tilt angle φ of the x-axis and y-axis could be obtained
from the following equation:

φ= arctan

(
λ1 (y)

λ1 (x)

)
(20)

Furthermore, we obtain the range of error constraint repre-
sented by the rotated coordinate

(
x 	, y 	) and the angle φ as:((

x 	 − x p
)

cos φ + (
y 	 − yp

)
sin φ

)2

λ1

+
(− (

x 	 − x p
)

sin φ + (
y 	 − yp

)
cos φ

)2

λ2
≤ s (21)

shown as Fig. 1.

Fig. 1. The mathematical model of error constraint.

Fig. 2. The flow chart of EC-QPF.

C. EC-QPF
As shown in Fig. 2, how our proposed algorithm EC-QPF

works are represented detailly. Considering a target node T
equipped with an inertial measurement unit (IMU) which
includes an accelerometer and gyroscope, we could obtain
the velocity, heading angle, and step size of T as the input
parameters of EC-QPF. Just like traditional PF, we generate a
series of particles according to prior knowledge at time t = 0,
i.e., X0

1:N ∼ p
(
X0

)
, where N is number of particles. When

node T moves in a two-dimensional (2-D) coordinate system,
particles move according to measuring velocity and heading
angle. So we could calculate the prior probability and obtain
an initial estimation X̂0

ini . Unlike the traditional PF algorithm,
we do not have to calculate the weight of particles according
to which we execute the resampling process. We deduce the
error constraint whose center is X̂0

ini by the distribution of
particles and pick a set of particles X0

1:M within the constraint,
where M ≤ N generally. Then, as input of quantum particle
swarm optimization resampling process, particles X0

1:M will
be calculated to get final estimation X̂0

f in at time t = 0.
Next, considering particles X0

1:M , we will execute the resam-
pling process using the quantum particle swarm optimization
method, which is mentioned in Section 3.1. For resampling
a new set of particles from X0

1:M , that is, an optimal choice
of particles to estimate the state of the target, we transform
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the resampling problem into a problem to finding an optimal
solution. First, we initialize a quantum particle swarm Q ={

Q1, Q2, . . . , Qnp
}
, where np denotes the number of quantum

particles. Each quantum particle Qi is a M-dimension real-
valued vector

(
qi

1, qi
2, . . . , qi

M

)
with qi

j ∈ [0, 1], where M is
the same of quantity of X0

1:M . For each component qi
j (1 ≤ j ≤

n) of quantum particle Qi , its value represents the probability
that the corresponding particle of X0

1:M is selected.

Algorithm 1 EC-QPF

Input: : The velocity v t , heading angle θ t and step size dt

of target node T measured at time t; Probability β of error
constraint; Size of particle swarm (np), maximum number
of iterations (I ter Max), α, c1 and c2 of QPSO;

Output: : The estimation X̂ t
f in of state of target node T .

1. INITIALIZATION AND PREDICTION
if t = 0 then

Initialize particles Xt
1:N of particle filter;

else
Obtain Xt

1:N after resampling at time t − 1, i.e., X̄ t−1
1:N ;

end if
Predict the state X̂ t

ini of T with Xt
1:N ;

2. EC-QPF
2.1 Select particles within error constraint

View X̂ t
ini as the estimated center position of error con-

straint;
Calculate the covariance matrix of Xt

1:N ;
Calculate range of error constraint using Eqs. (19) - (21);
Select a set of particles Xt

1:M within error constraint;
2.2 Quantum particle swarm optimization resampling

let k = 0, k denotes the quantum particle swarm at the
iteration k;

Initialization of quantum particle swarm Qk ={
Qk

1, Qk
2, . . . , Qk

np

}
, where Qk

i = (
qi

1, qi
2, . . . , qi

M

)
;

while k < I ter Max do
for i = 1 to np do

Transform Qk
i into binary particle Dk

i with Eq. (12);
Calculate the fitness value of Dk

i with Eq. (22);
end for
Update quantum particle swarm using Eqs. (23) - (25);
k = k + 1;

end while
Obtain the optimal solution D∗, according to which we

can resampling a new set of particlea new set of particle;
Duplication to hold the quantity of particles X̄ t

1:N ;
3. ESTIMATION

Calculate the estimation X̂ t
f in of state of target node T ;

As described in Section 3.1, QPSO algorithm performs a
number of evolution iterations until the stopping criteria of
QPSO is met, i.e., until the maximum number of iterations of
QPSO I ter Max is reached or the global best value remained
unchanged after half of I ter Max iterations. For a randomly
initialized Qk in which the notation k denotes the current
number of iterations, we transform each quantum particle
Qi = (

qi
1, qi

2, . . . , qi
M

)
into a M-dimensional binary vector

(called binary particle) Di = (
di

1, di
2, . . . , di

M

)
by applying a

random observation as Eqs. 12. For each component di
j (1 ≤

j ≤ M), its value represents if it is selected, i.e., value “1”
represents be selected and value “0” represents not. As we can
see, each binary particle Di expresses a resampling result of
X0

1:M . And in this article, we define the fitness function for
each binary particle Di as:

Fitness i = exp

[
−

∑M
j=0 di

j Dis j

2V
∑M

j=0 di
j

]
(22)

where Dis j is the distance between X̂0
ini and X0

j , i.e., Dis j =∥∥∥X̂0
ini − X0

j

∥∥∥
2
, and V is the variance of X0

1:M . The higher the
fitness value, the more reliable the sampling results are. After
getting each binary particle’s fitness value, we could update the
quantum particle swarm according to the following evolution
formulas at each iteration k:

Q̄k+1 = αD̄k + (1 − α)
(
�e − D̄k

)
(23)

Q̂k+1
i = αD̂k

i + (1 − α)
(
�e − D̂k

i

)
(24)

Qk+1
i = c1 Qk

i + c2 Q̂k+1
i + (1 − c1 − c2) Q̄k+1 (25)

As mentioned in Section 3.1, control parameter
α ∈ [0, 1], coefficients c1 ∈ [0, 1], c2 ∈ [0, 1], and
0 < c1 +c2 < 1. We performed some preliminary experiments
to find the “good” values for the QPSO parameters. We noted
that our algorithm displayed better performance for α > 0.7.
low values implied slow convergence and high values
implied convergence to non-optimal performance values.
Thus, we chose α = 0.8. We also observed that the weight
of best global position factor was more important than
c1 and c2. Low values for (1 − c1 − c2) implied slow
convergence and high values result in a lack of diversity.
A good trade-off was obtained for the values c1 = c2 = 0.2,
and (1 − c1 − c2) = 0.6 [26]. �e = (1, 1, . . . , 1) is a
M-dimensional unit vector, D̂k

i (1 ≤ i ≤ np) and D̄k

denote respectively the personal and global best solution
for the binary particle Di at iteration k, which could be
inferred by fitnes value set of binary particles Dk . And
Q̂k+1

i (1 ≤ i ≤ np) and Q̄k+1 represent respectively the
personal and global historical best solution for the quantum
particle Qi at iteration k + 1. After a new quantum particle
Qk+1

i is generated by equations (23)-(25), Qk+1
i is used to

replace Qk
i and is at the same time transformed into a binary

particle Dk+1
i , which is then used to update D̄k+1

i and D̂k+1
i

accordingly.
Until a maximum number of iterations is reached, we obtain

a final optimal solution D∗, which illustrates an optimal
resampling result. After all particles selected corresponding to
D∗ have performed the duplication operation, the quantity of
particles N still holds. The chosen set of particles is utilized
to get the final estimation X̂0

f in and would also be used as
initial input for the next step.

To better illustrate the process of the proposed EC-QPF
algorithm, pseudo-code is displayed in Algorithm 1. In the
proposed algorithm, the most critical parameters that affect
the computation time are the number of particles N , the size



WAN et al.: ERROR CONSTRAINT ENHANCED PARTICLE FILTER 24437

TABLE II
PRIMARY EXPERIMENTAL PARAMETER SETTINGS

of particle swarm np, and the maximum number of iter-
ations I ter Max . The algorithm’s complexity is at most
O(N ∗ I ter Max ∗ np) according to the Big O notation.

IV. NUMERICAL SIMULATION AND ANALYSIS

In this section, we consider various simulation scenarios to
verify our proposed EC-QPF Algorithm. Numerical simula-
tions confirm the efficiency of the scheme put forth.

A. Experimental Setup
We conducted a random walk numerical simulation exper-

iment of the target node based on MATLAB. The personal
computer’s operating system is Windows 10 Professional
Edition system, and the hardware configuration is four core
i5 CPU and 16GB memory. The experimental scene is set as
200m ∗ 200m, and the initial position of the target node is
random. The target node travels 180 steps at each simulation
scenario, and the travel trajectories are recorded. The primary
parameter setting of the experiment is shown in Table II. All
algorithms are performed and predict the position reached by
each travel of the target node. Euclidean distances between
the predicted position and the actual position are counted.

B. Case 1: Experiment for Verifying Accuracy
To demonstrate the effectiveness and advantages of our pro-

posed EC-QPF algorithm in target tracking, we carried out a
single target tracking simulation experiment, in which EC-QPF
was compared with two other modified PF algorithms, Com-
pressed Monte Carlo Resampling PF (CMCR-PF) [27] and
standard Systematic Resampling PF (SR-PF) [28]. The error
is expressed as the Euclidean distance between the predicted
position and the actual position, which is defined as follows:

e =
∥∥∥P̂t − Pt

∥∥∥
2

(26)

As can be seen from Fig. 3, the red represents the result
of EC-QPF, while the blue and the orange represent the
result of CMCR-PF and SR-PF, respectively. We can draw the
following conclusions from Fig. 3-(a): The estimation error
of the target node shows a gradually increasing trend as the
target moves over time, which to some extent verifies the
cumulative error and drifting problem of IMU. Considering
the three PF algorithms, the error constraint enhanced quantum
particle swarm optimization-based particle filter (EC-QPF) has
a lower error growth rate than the other two modified PF
algorithms, proving that the EC-QPF algorithm could suppress

Fig. 3. (a) The estimation error of three PF algorithms; (b) CDF of
estimation error.

Fig. 4. Experiment for PF particle number. (a) The mean of estimation
error; (b) The variance of estimation error.

the cumulative effect error to a certain extent. Furthermore,
the maximum error of EC-QPF in 180 steps is 5.03 m, while
CMCR-PF is 16.17 m and SR-PF is 16.94 m, which explains
the superiority of our proposed EC-QPF algorithms.

Fig. 3-(b) shows the cumulative distribution function (CDF)
versus estimation error for three PF algorithms in target
tracking for a total of 180 steps. It is observed that using
the proposed EC-QPF, we can attain 4.36 m error at 80%
confidence level, where CMCR-PF is 13.25 m and SR-PF
is 13.56 m. The proposed EC-QPF has a 67% improvement
instead of CMCR-PF and SR-PF, which provides more estima-
tion accuracy than the other two modified PF methods. The
reason is that the QPSO-resampling method avoids particle
impoverishment and keeps the diversity of particles. Fur-
thermore, error constraint ensures particles in a range with
high confidence, which also enhances the performance of
EC-QPF.

C. Case 2: Effect of the Number of Particles
As well known, the accuracy of the traditional PF algo-

rithm depends on the sample size. The larger the sample
size, the more accurate the PF algorithm. However, there
is no guarantee to meet the real-time requirement of the
system because of the decreasing tremendously computation
efficiency when setting a large sample size. We solve this
problem by applying quantum particle swarm optimization to
the resampling process of the particle filter. For verifying the
validity, we take the number of PF particles as a variable, from
100 to 2000, and keep other parameters unchanged in Table II
to execute a simulation.
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Fig. 5. Experiment for QPSO swarm size. (a) The mean of estimation
error; (b) The variance of estimation error.

Fig. 6. Experiment for noise of step size. (a) The mean of estimation
error; (b) The variance of estimation error.

As shown in Fig. 4-(a), with considering the three PF
algorithms mentioned above, the mean of the estimation error
of the target node shows a gradually decreasing trend as the
PF particle number increases. The mean estimation error of
EC-QPF tends to be stable when the number of particles is
greater than 800, while the other two modified PFs continue
to decline. This proves that our algorithm EC-QPF is less
dependent on particle number. Furthermore, the maximum
mean of EC-QPF 3.66 m is much less than the minimum of
the other two (CMCR-PF is 6.71 m, and SR-PF is 6.92 m),
which demonstrates the advantage of the proposed EC-QPF.
As can be seen from Fig. 4-(b), the variance of error of
EC-QPF keeps smooth and steady, while CMCR-PF and SR-
PF present a clear downward trend. Moreover, in CMCR-PF,
the maximum and minimum variance of estimation error are
32.43 m2 and 16.11 m2 respectively, nearly to SR-PF. They
are much larger than the maximum of EC-QPF 3.82 m2,
which illustrates that EC-QPF has better stability than the
other modified PF algorithms. Thus, in terms of the proposed
algorithm EC-QPF, we set 500 as the parameter of the number
of particles, balancing accuracy and computation cost.

D. Case 3: Effect of the Size of Particle Swarm
For finding an appropriate parameter of QPSO swarm size

np, we took the size of QPSO particle swarm as a variable,
from 100 to 2000, and keep other parameters unchanged in
Table II to execute a simulation. Fig. 5 shows the trend of the
mean and variance of the estimation error as the swarm size
increasing. The variation trend of estimation error varies when
the size of the particle swarm is smaller or larger than 500.
The mean and variance of estimation error decrease sharply

Fig. 7. Experiment for noise of heading angle. (a) The mean of estimation
error; (b) The variance of estimation error.

when swarm size is smaller than 500. The maximum mean of
error is 4.69 m, and the value reduces to 2.69 m when the size
of particle swarm is 500. In addition, the maximum variance
of the error is 5.22 m2, and the value reduces to 1.73 m2

when the size of the particle swarm is 500. There is a slight
fluctuation when swarm size is larger than 500. From 500 to
2000, the maximum and minimum mean of error is 3.16 m and
2.38 m, while the error’s maximum and a minimum of variance
is 3.53 m2 and 1.28 m2. Thus, in terms of the proposed
algorithm EC-QPF, we set 500 as the parameter of swarm size
of quantum particle swarm optimization, balancing accuracy
and computation cost.

E. Case 4: Effect of the Step Size and Heading Angle
Furthermore, due to the uncertainty of the target motion,

we took the values of the noise of step size and heading angle
as variables respectively and keep other parameters unchanged
in Table II to execute simulations. Fig. 6 and Fig. 7 show
the trend of the mean and variance of the estimation error
as the variance of step size and heading angle increasing,
respectively. As can be seen from Fig. 6 and Fig. 7, the mean
and variance of the estimation error of the proposed EC-QPF
keep a smooth trend while the variance of step size and
heading angle are increasing. However, CMCR-PF and SR-PF
show significant fluctuation, which means high stability and
superiority of the proposed algorithm. Since our proposed
algorithm is almost unaffected by the step size and heading
angle, we set 0.01 as the parameter of step noise variance and
angle noise variance without loss of generality.

V. CONCLUSION

In this paper, we proposed a new modified particle
filter method named error constraint enhanced particle fil-
ter using quantum particle swarm optimization algorithm
(EC-QPF), which achieves high-precision position estimation
of target tracking with IMU. We avoided particle impover-
ishment problems occurring in the traditional particle filter
method by replacing the weight-based resampling method with
the quantum particle swarm optimization-based resampling
method. Then we raised the theoretical foundation of error
constraint according to the error distribution characteristics
of particles applying to enhance the performance of the
proposed particle filter. Experiment shows that the estimation
of the target position of the proposed algorithm EC-QPF
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is more accurate than the other two modified particle filter
methods under the same condition, which proves that EC-QPF
eliminates the cumulative error more efficiently. Furthermore,
we discussed the impact of the number of particles, the size
of the quantum particle swarm, the step size, and the heading
angle. Experimental results verify our proposed algorithm’s
superiority and stability. In this paper, we assumed the noise
to be Gaussian distributed noise, which simplified the issue
and facilitated the derivation of the formula. We will discuss
the mixed noise problem further in the following work.
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