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Error-Ellipse-Resampling-Based Particle
Filtering Algorithm for Target Tracking

Xinxin Wang, Cheng Xu, Member, IEEE, Shihong Duan, and Jiawang Wan

Abstract—In this paper, an error-ellipse-resampling-based
particle filter (EER-PF) algorithm is proposed for target track-
ing in wireless sensor networks. In order to improve the
effectiveness of the particles, in the process of resampling,
the error ellipse of different confidence levels is established
according to the error covariance matrix of particles. The
particles are divided into different levels based on the geo-
metrical position, and then the particles are screened and
optimized. The effectiveness of the proposed method in
a cumulative error optimization was verified by comparing
with the performance of posterior Cramér-Rao lower bound
(PCRLB). Experimental results show that the proposed algo-
rithm can effectively solve the problem of sample degeneracy
and impoverishment, and has higher positioning accuracy.

Index Terms— Particle filter (PF), error ellipse, resampling, posterior Cramér-Rao lower bound (PCRLB), cumulative
error optimization.

I. INTRODUCTION

AS ONE of the research hotspots of wireless sensor
networks, the positioning and tracking of moving targets

have a wide range of applications in pedestrian navigation [1],
emergency search and rescue [2], and so on. Generally,
to accomplish the target tracking in wireless sensor networks,
two basic steps are required: 1) obtaining the target node’s
wireless feature parameters about its location; 2) perform the
localization algorithm to complete the determination of target
position.
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In terms of location information parameter acquisi-
tion, Global Positioning System (GPS) [3] can achieve
high-precision outdoor positioning, but it is greatly affected by
signal conditions in densely populated areas such as indoors.
In order to compensate for the high-precision positioning
requirements under the above conditions, wireless positioning
technology in local area networks is widely applied, such as
Received Signal Strength (RSS) [4], Time of Arrival (TOA)
[5], [6], Time Difference of Arrival (TDOA) [5], Angle of
Arrival (AOA) [7], etc. However, wireless signal transmission
is greatly affected by factors such as multipath and non-line-of-
sight (NLOS). The RSS transmission-oriented system cannot
accurately estimate the signal transmission distance, resulting
in poor positioning accuracy. AOA measurement relies on a
high-precision smart antenna array, which makes it difficult to
deploy. Thus, it cannot be used on a large scale. TOA- and
TDOA-based positioning systems have higher measurement
accuracy, but they are affected by multipath and NLOS. The
deployment of the base stations needs to consider the influence
of the relative geometric position. In addition, TDOA requires
high-precision synchronization technology support, which may
lead to a large communication overhead. In contrast, the mov-
ing target tracking method based on an Inertial Measurement
Unit (IMU) does not need to deploy infrastructure and has
the characteristics of low cost and high precision. It has
been widely concerned and applied. However, in long-term,
wide-range target positioning applications, due to the inherent
cumulative error and drift problem of inertial sensors [8],
the error increases with the increase of the use time, and
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it is difficult to automatically recover. Therefore, how to
use the data processing algorithm to optimize the cumulative
error of IMU is an urgent problem to be solved in practical
applications.

The cumulative error problem of IMU could be solved
by filtering methods [9] in practical applications. In specific
applications, system equations and measurement equations are
usually nonlinear, which makes traditional Kalman Filter (KF)
unusable. Moreover, the most classic method to solve nonlin-
ear filtering problems is the Extended Kalman Filter (EKF).
The EKF algorithm is a local linear optimization based on a
nonlinear system model, which can obtain ideal filtering results
for weakly nonlinear systems. For strong nonlinear systems,
the EKF inevitably introduces more truncation errors, making
the true nonlinear characteristics of the system unrecognizable.
Another filter that solves the nonlinear filtering problem is
the Unscented Kalman Filter (UKF), which is based on
the algorithm framework of unscented transformation and
EKF. Because UKF does not linearize the system model,
it can reflect the characteristics of the whole system more
realistically. However, UKF still does not apply to general
non-Gaussian distribution models [9].

Aiming at this problem, with the proposed Bayesian
principle-based Monte Carlo particle filter (PF) [10], which
overcomes the requirements of traditional Kalman filter for
linear and Gaussian distribution systems. Particle filtering is a
sequential process of state estimation. The iterative updating
method of approximating the posterior distribution by a large
number of particles (samples) avoids the problem that the
required integral operation is difficult. Most of them are based
on the following three steps: 1) predicting, generating a new
set of particles; 2) updating, calculating particle weights;
3) resampling, rescreening the set of particles. However,
particle filtering faces the problem of sample degeneracy and
sample impoverishment in the resampling recursive process
[11], [12]. Existing research has proposed many improved
resampling algorithms, such as stratified resampling [11] and
systematic resampling [12]. Both algorithms implement resam-
pling based on layered ideas. Stratified resampling generates
random numbers independently in each stratum, while system-
atic resampling chooses only one uniform random number and
adds it to the ordered set. Thus, the samples of the systematic
resampling are no longer independent and at the same position
in the stratum. After a series of iterations, the filtered particle
set will be reduced, which will cause most of the weights to
be occupied by a few particles. As a result, the final state
estimation result is not ideal. Therefore, how to solve the
problem of sample degeneracy and impoverishment is a key
to improve the accuracy of target tracking based on particle
filter.

In summary, in this paper, we propose an error-ellipse-
resampling-based particle filtering (EER-PF) method for target
tracking, considering the geometric position distance between
particles, and resampling at the different levels. The main
contributions of this paper are listed as follows:
• Particle filter is used to optimize the measurement infor-

mation of the IMU. The step size, velocity, and heading
angle of the target node can be obtained by an IMU.

Fig. 1. An example trajectory of a randomly walking target node: 3 steps
from a known initial position, while step size dk and heading angle θk can
be obtained by an inertial measurement unit.

The random walk model [13] is investigated to simulate
the motion of target nodes and defines the state transition
equation.

• To improve the problem of sample degeneracy and
impoverishment, the concept of error ellipse is introduced
to improve the resampling process. Different error ellipses
are constructed according to covariance of potential par-
ticles at a certain moment. The overall particle set is
divided into three levels, namely negligible particles,
moderate particles, and dominating particles. In order to
complete the screening and optimization of the particles,
we will discard the negligible particles. Furthermore,
the moderate particles and the dominating particles will
be retained and copied, respectively.

• The cumulative error problem of an IMU is considered
and verified with comparison of its lower bound. Poste-
rior Cramér-Rao lower bound based on IMU method is
derived, so as to verify the effectiveness of the proposed
particle filter tracking algorithm in the aspect of cumula-
tive error correction.

The remainder of this paper is organized as follows:
Section II gives the problem definition and the state equation
of the system. Section III describes the detailed filtering
method and the proposed error-ellipse-resampling process.
Section IV shows the experimental results and analysis. Con-
clusions are drawn in Section V.

II. PROBLEM FORMULATION

Fig. 1 illustrates the random motion process of the single
target node. The state parameter of the target node at time k
is represented by Xk � [xk, yk], k ∈ [0, K − 1], where xk

and yk denotes the positional information of the target node
in a two-dimensional Cartesian coordinate system. Therefore,
all state information of the target node is counted as a vector
X = [X T

0 , X T
1 , · · · , X T

K−1]T . In general, the knowledge of
a random walk model can be modeled as a Gauss-Markov
process [13]:

Xk+1 = Xk + Tkvk (1)

where Tk represents the motion period of the target node from
time k to time k + 1, and vk denotes the velocity from time
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k to time k + 1. Both the step size and velocity of the target
node can be obtained from the accelerometer measurement:

d̂k = d + uk, uk ∼ N(0, γ 2
1,k) (2)

where d represents the true distance between the positions of
time k and k + 1, i.e.,

d =
√

(xk+1 − xk)2 + (yk+1 − yk)2 (3)

and uk is the step noise that obeys the Gaussian distribution
with a mean of 0 and a covariance of γ 2

1,k . Thus, the vector

d̂ = [d̂0, d̂1, · · · , d̂K−1]T reflects the step size information.

v̂k = v + rk, rk ∼ N(0, γ 2
2,k ) (4)

where v represents the actual walking velocity of the target
node, and rk is the velocity noise that obeys the Gaussian
distribution with a mean of 0 and a covariance of γ 2

2,k . v̂ is
introduced to collect v̂k , given by v̂ = [v̂0, v̂1, · · · , v̂K−1]T .
The heading angle of the target node can be measured by the
gyroscope:

θ̂k = θk + ηk, ηk ∼ N(κ, γ 2
3,k) (5)

where θk is the actual horizontal angle, i.e.,

θk = arctan
yk+1 − yk

xk+1 − xk
(6)

and ηk is the heading angle noise that obeys the Gaussian
distribution with a mean of κ and a covariance of γ 2

3,k . Thus,
the vector θ̂ = [θ̂0, θ̂1, · · · , θ̂K−1]T reflects the heading angle
information during the motion of the target node. According to
the standards of random walk model, we assume that the target
node has a motion period of 1s and maintains uniform motion.
Then, the state transition equation of the target tracking by the
PF algorithm is expressed as:[

xi
k

yi
k

]
=
[

xi
k−1 + v̂ i

k cos θ̂ i
k

yi
k−1 + v̂ i

k sin θ̂ i
k

]
+
[

σx

σy

]
, σx , σy ∼ N(τ, ε2)

(7)

where [xi
k, yi

k]T and [xi
k−1, yi

k−1]T represent the position of
particle i at time k and k − 1, respectively. v̂ i

k and θ̂ i
k are

the velocity and heading angle obtained by particle i at time
k, respectively. The variables σx and σy are noises on the
horizontal and vertical coordinates, which obey the Gaussian
distribution with a mean of τ and a covariance of ε2. The
moving target node can obtain a position estimation for each
state by calculating a posteriori probability density function
p(Zk|Xk), where Zk = [d̂k, v̂k , θ̂k] is an observation vector.

III. PARTICLE FILTER ALGORITHM

In the random walk model for target tracking, the step size,
velocity, and heading angle information of a single target
motion can be measured by an IMU. However, in practical
applications, the distribution of these mentioned data may
be non-Gaussian. Furthermore, particle filter can be well
fit for the non-Gaussian nonlinear target tracking process.
In this paper, we propose an error-ellipse-resampling-based
PF algorithm (EER-PF). We introduce the concept of error
ellipse to improve the resampling process, so as to overcome
the problem of sample degeneracy and impoverishment.

A. Initialization and Weights Calculation

The PF completes the estimation of the state Xk by updating
a set of random measurements [Xi

1:k, wi
k]Ni=1, which consist

of N particles Xi
k at time k and the corresponding weight

wi
k . The state estimation can be calculated from this set

of random measurements. When the quantity of samples is
large enough, this estimation for the state will approximate
the posterior probability density function p(X1:k |Z1:k) of the
unknown distribution X1:k . In the initialization phase, the N
particles are initialized using the following formula:[

xi
0

yi
0

]
=
[

x̂0
ŷ0

]
+
[

σx

σy

]
(8)

where [x̂0, ŷ0]T is the initial position of the target to be
tracked, and σx and σy are Gaussian noises in the horizontal
and vertical directions, respectively. In the Bayesian setup,
there are two frameworks for forecasting and updating. It is
assumed that the state transition process obeys the first-order
Markov model, namely p(Xk|X1:k−1) = p(Xk |Xk−1). Then
in the prediction phase, the prior probability density function
p(Xk|Z1:k−1) can be calculated from the filter distribution
p(Xk−1|Z1:k−1) at time k − 1:

p(Xk |Z1:k−1) =
∫ system model︷ ︸︸ ︷

p(Xk |Xk−1)

prev ious posterior︷ ︸︸ ︷
p(Xk−1|Z1:k−1) d Xk−1 (9)

where p(Xk−1|Z1:k−1) is assumed to be known and
p(Xk|Z1:k−1) is determined by equation (7). In the update
phase, the posterior probability density function is updated by
a new set of measured values Zk , namely

p(Xk |Z1:k) =
measurement model︷ ︸︸ ︷

p(Zk|Xk)

current prior︷ ︸︸ ︷
p(Xk |Z1:k−1)

p(Zk|Z1:k−1)︸ ︷︷ ︸
normalized constant

(10)

where p(Zk|Xk) is the likelihood function defined by the mea-
surement equation [14] and p(Zk|Z1:k−1) is the normalized
constant. In fact, the posterior probability density function is
not known, so Monte Carlo sampling is introduced to sample
a set of random weighted samples from the state space of
the known distribution instead of the posterior probability
distribution, i.e., Xi

k ∼ q(Xi
k|Xi

k−1, Zk), where q(·) is the
importance probability density function [15]. Then, the weight
is initialized to 1/N and updated by:

wi
k ∼ wi

k−1

p(Zk|Xi
k)p(Xi

k |Xi
k−1)

q(Xi
k|Xi

k−1, Zk)
(11)

The transitional prior probability density function is usually
selected as the importantce density, that is q(Xi

k|Xi
i−1, Zk) =

p(Xi
k|Xi

k−1) [15]. Followed by normalization w̃i
k =

wi
k/
∑N

i=1 wi
k . Finally, the approximate posterior probability

density function can be calculated as:

p(Xk|Z1:k) ≈

N∑
i=1

w̃i
kδ(Xk − Xi

k) (12)
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where wi
k and Xi

k are the weight and the state of the particle i ,
respectively, and δ(·) is the Dirac delta function. When N →
∞, the approximation approaches the true posterior density.

B. Resampling Method for Particle Filtering

On one hand, most of the weights are concentrated on a
few particles as the iteration proceeds, which is called sample
degeneracy. These degraded particles will also affect the final
estimation results. On the other hand, sample impoverishment
is due to the fact that most of the negligible particles are
discarded during the iteration, which resulting in loss of
sample diversity. In order to solve these problems, a method
of particle grading using an error ellipse is described in this
section.

1) Error Ellipse: The error ellipse, also known as the con-
fidence ellipse, is derived from the interval estimation of
the coordinate parameters. Some concepts in the interval
estimation: when estimating the interval s (the range of the
estimated scale), if a small probability β is given in advance,
an interval (s1, s2) can be found to satisfy:

p(s1 < s < s2) = 1− β (13)

Then the interval (s1, s2) is called the confidence interval of
the scale s, and s1 and s2 are called confidence limits (or
critical values); s ≤ s1 and s ≥ s2 are called negative domains;
probability β is called significance level (or risk), and 1 − β
is called confidence level (or probability). In the study of this
paper, we consider the two-dimensional covariance matrix of
N particles at time k:

D =
[

cov(x, x) cov(x, y)
cov(y, x) cov(y, y)

]
(14)

where cov(x, x) and cov(y, y) are the variances in the x-axis
and y-axis directions, respectively. However, data showing rel-
evance can be obtained by extending the concept of variance:

cov(x, y) = E[(x − E(x))(y − E(y))] (15)

If x is positively related to y, then y and x are also positively
correlated, i.e., cov(x, y) = cov(y, x). Therefore, the covari-
ance matrix is always a symmetric matrix with a variance on
the diagonal and a covariance on the off-diagonal. When the
error covariance matrix is introduced, the equation of error
ellipse, whose center is not at the origin, is expressed as:

s = (x − x p)
2

λ1
+ (y − yp)

2

λ2
(16)

where λ1 and λ2 are the largest and smallest eigenvectors of
the covariance matrix D, respectively. (x p, yp) is the predicted
position and s is the size of the ellipse. Furthermore, when the
ellipse is tilted, the angle α between the x-axis and the y-axis
is described as

α = arctan
λ1(y)

λ2(x)
(17)

Assuming the rotated coordinates are (x ′, y ′), then{
x ′ = x cos α − y sin α
y ′ = x sin α + y cos α

(18)

The formula after replacing (x, y) with (x ′, y ′) is expressed
as {

x = x ′ cos α + y ′ sin α
y = −x ′ sin α + y ′ cos α

(19)

Substitute the formula (19) into (16), then the error ellipse is
formalized as:

s = ((x ′ − x p) cos α + (y ′ − yp) sin α)2

λ1

+ (−(x ′ − x p) sin α + (y ′ − yp) cos α)2

λ2
(20)

In summary, the error ellipse constraint is

s ≥ ((x ′ − x p) cos α + (y ′ − yp) sin α)2

λ1

+ (−(x ′ − x p) sin α + (y ′ − yp) cos α)2

λ2
(21)

2) Particle screening and optimization: Fig. 2 depicts a
resampling process for particle sets based on error ellipses.
Two different confidence levels (confidence probabilities) are
established. During the resampling process, N potential parti-
cles are divided into three different levels by geometric posi-
tions. The particles outside the outer ellipse are Nl negligible
particles which will be discarded; the particles located in
the middle of the two ellipses are regarded as the moderate
particles, and these particles will be reserved; Nh dominating
particles in the inner ellipse will be duplicated. During the
duplication process, since the rounding operation may lead to
the duplication times of particles to be less than 1, the first
Nt = (Nl − 	Nl/Nh 
 Nh ) dominating particles are dupli-
cated c1= 	Nl/Nh 
+ 2 times, then the remaining dominating
particles Nt − Nl are duplicated c2 = 	Nl/Nh 
 + 1 times.
After all particles have performed the duplication operation,
the quantity of particles is still N . The selected set of particles
will also be used as initial input for the next iteration.

3) Weight assignment and estimation results update: During
the resampling process, due to the discarding and duplication
of some particles, the weights of the discarded particles
are reassigned to the particles being duplicated. However,
the number of particles after screening and replication is still
N. The weights are redistributed using the following equation:

 i
k =

⎧⎪⎨
⎪⎩

(1− M)/ (Nl + Nh ) , si
k < s2

w̃i
k, s1 ≤ si

k ≤ s2

0, si
k > s1

(22)

where M is the sum of the weights of the moderate particles,
Nl and Nh are the quantity of negligible particles and dom-
inating particles, respectively. The value si

k is calculated by
formula (19) for particle i at time k. Finally, the estimated
results of the state are updated by the weighted average:{

xk =∑ N
i=1

i
k x i

k

yk =∑ N
i=1

i
k yi

k

(23)

The overall resampling algorithm is described as shown in
Algorithm 1.
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Fig. 2. An example of a resampled particle screening process: a) shows the initial distribution of the particles. b) two different confidence level
ellipse (50% confidence probability and 12.5% confidence probability) based on the covariance matrix of the particle set. c) Screening results for
particles of different levels. The red particles could be removed and the bold points are copied, to emphasize the high weight particles and reduce
the low weight ones.

Algorithm 1 Error-Ellipse-Resampling Algorithm (EER-PF)

Input:
{

Xi
k, w̃

i
k

}N
i=1 ← status, weight information

Output:
{
indexh, indexm, M, c(m)

} ← resampling index,
weight sum, number of copies
for i ← 1, N do

si
k ← elli pse(Xi

k, (x p, x p)) � f ormula(20);
if si

k > s1 then
indexl(Nl)← i ;
Nl ← Nl + 1;

else if si
k < s2 then

indexh(Nh)← i ;
Nh ← Nh + 1;

else
M ← M+w̃i

k ;
end if

end for
Nt ← Nl − 	Nl/Nh
 ∗ Nh ;
for m ← 1, Nh do

if m ≤ Nt then
c(m) = 	Nl/Nh
 + 2;

end if
c(m) = 	Nl/Nh
 + 1;

end for

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In order to verify the effectiveness of EER-PF algorithm in
single target tracking process, we simulate the random walking
process and location estimation of a single target through
MATLAB software. The target node moves at a constant speed
in a two-dimensional coordinate system of 50m × 50m, and
the sampling interval of each experiment is 1s. The initial

position (x0, y0) of the target node and the moving heading
angle θ are randomly generated. The step d of each walk is
2m, and the step noise uk obeys a Gaussian distribution with
a mean of 0 and a variance of 0.1m2 (γ 2

1,k = 0.1m2). The
velocity of each walk is set to 2m/s, and the velocity noise
rk obeys the Gaussian distribution with a mean of 0 and a
variance of 0.1m/s (γ 2

2,k = 0.1m/s2). The angle noise η obeys a
Gaussian distribution with a mean of 10◦ and a variance of 0.1
(κ = 10◦, γ 2

3,k = 0.01). The random jitters σx and σy obeys
the Gaussian distribution with a mean of 0.1m and a variance
of 0.1m2 (τ = 0.1m, ε2 = 0.1m2). The positioning error ρ
of the random walk model is calculated from the Euclidean
distance between the predicted position and the real position:

ρ =
√(

x p − xt
)2 + (yp − yt

)2 (24)

A. Posterior Cramér-Rao Lower Bound

PCRLB is often used to provide a theoretical lower limit on
system performance [16]. Under the premise of considering
time domain information, the joint probability function is
defined as:

p
(

d̂, v̂, θ̂ , X̂
)
= p

(
d̂0|X0

) K∏
k=1

p
(
v̂k |Xk−1, Xk

)
·p
(
θ̂k|Xk−1, Xk

)
p
(

d̂k|Xk

)
(25)

The root mean square error (RMSE) of X̂k is limited by the
Fisher information matrix:

E

{(
X̂k − Xk

)2
}
≥
√

tr
(
J (Xk)

−1) (26)
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In the above formula, tr(·) stands for the trace of the matrix,
and the Fisher information matrix J is expressed as:

J (X) = Ed̂,v̂,θ̂

{
−�X

X ln p
(

d̂, v̂, θ̂ , X̂
)}

(27)

where �a
b = ∇b∇T

a is the second-order derivative and ∇a =
[ ∂
∂a1

, ∂
∂a2

, · · · , ∂
∂aM
]T is defined as the gradient vector of a.

Therefore, the joint probability density pk at the state k can
be defined as:

pk = p
(

d̂0:k, v̂0:k , θ̂0:k, X̂0:k
)

(28)

where d̂0:k = (d̂0, d̂1, · · · , d̂K ), v̂0:k = (v̂0, v̂1, · · · , v̂K ),
θ̂0:k = (θ̂0, θ̂1, · · · , θ̂K ), X̂0:k = (X̂0, X̂1, · · · , X̂ K ) are
expressed as a set of step size, velocity, heading angle, and
target coordinate vectors from the initial state to the state k.
We assume that the state vector can be expressed as Xk =
[X T

0:k−1, X T
k ]T , then the Fisher information matrix for X0:k

can be written as:

J (X0:k) =
⎡
⎣E

{
−�

X0:k−1
X0:k−1

ln pk

}
E
{
−�

Xk
X0:k−1

ln pk

}
E
{
−�

X0:k−1
Xk

ln pk

}
E
{
−�

Xk
Xk

ln pk

}
⎤
⎦

=
[

Ak Bk

BT
k Ck

]
(29)

where Ak , Bk , BT
k , Ck represent the Fisher information matrix

J (X0:k−1, X0:k−1), J (Xk, X0:k−1), J (X0:k−1, Xk), J (Xk, Xk),
respectively. According to the literature [17], the sub-matrix
can be obtained by the pseudo-inverse of the matrix, i.e.,

Jk=Ck − BT
k A−1

k Bk (30)

Therefore, the joint probability density pk+1 at the state k+1
is defined as:

pk+1 = pk p
(

d̂k+1|Xk+1

)
p
(
v̂k+1|Xk, Xk+1

)
×p

(
θ̂k+1|Xk, Xk+1

)
(31)

According to the joint probability density pk+1, the Fisher
information matrix J (X0:k+1) of state k + 1 can be solved:

J (X0:k+1) =
⎡
⎢⎣ Ak Bk 0

BT
k Ck + H 11

k H 12
k

0 H 12
k φk+1+H 22

k

⎤
⎥⎦ (32)

where H 11
k , H 12

k and H 22
k reflect the posterior information

from state k to state k + 1,

H 11
k = Ev̂,θ̂

{
−�

Xk
Xk

ln p
(
v̂k+1|Xk, Xk+1

)
×p

(
θ̂k+1|Xk, Xk+1

)}
(33)

H 12
k = Ev̂,θ̂

{
−�

Xk+1
Xk

ln p
(
v̂k+1|Xk, Xk+1

)
×p

(
θ̂k+1|Xk, Xk+1

)}
=
(

H 21
k

)T
(34)

H 22
k = Ev̂,θ̂

{
−�

Xk+1
Xk+1

ln p
(
v̂k+1|Xk, Xk+1

)×
×p

(
θ̂k+1|Xk, Xk+1

)}
(35)

where φk+1 is the positional information defined by the
measurement equation, i.e.,

φk+1=Ed̂k+1

{
−�

Xk+1
Xk+1

ln p
(

d̂k+1|Xk+1

)}
(36)

Then, the Fisher information matrix of state k + 1 can be
derived from J (X0:k+1) and Jk ,

Jk+1 = φk+1 + H 22
k −

[
0 H 21

k

] [ Ak Bk

BT
k Ck + H 11

h

] [
0

H 12
k

]
= φk+1 + H 22

k − H 21
k

(
Jk + H 11

k

)−1
H 12

k (37)

Since the velocity error rk and the heading angle error ηk

obey the Gaussian distribution, the following conclusions can
be drawn:

H 11
k = H 12

k = H 22
k = Hk (38)

Hk =
ξv̂k+1 (θk+1)

γ 2
2,k

+
ξθ̂k+1

(θk+1)

γ 2
3,kv

2
k+1

(39)

ξv̂k+1 (θk+1) =
[

cos2θk+1 cos θk+1 sin θk+1

cos θk+1 sin θk+1 sin2θk+1

]
(40)

ξθ̂k+1
(θk+1) =

[
sin2θk+1 − cos θk+1 sin θk+1

− cos θk+1 sin θk+1 cos2θk+1

]
(41)

Therefore, the posterior Fisher information matrix:
Jk+1 = φk+1 + Hk − Hk(Jk + Hk)

−1 Hk (42)

The above formula can be further simplified to

Jk+1 = φk+1 +
(

H−1
k + J−1

k

)−1
(43)

where φk + 1 is the position information of the state k + 1
defined by the measurement equation, and Hk reflects the
information based on the IMU. Finally, we can iteratively
calculate the Fisher information matrix at each moment by
equation (43) to get the corresponding PCRLB. The Fisher
information matrix at the initial moment can be obtained from
the ranging information at the initial moment, that is, J0 = φ0.

B. Experimental Results and Performance Analysis

In order to verify the effectiveness of our proposed EER-PF
algorithm for cumulative error correction, we chose unresam-
pled algorithm, stratified resampling algorithm [11], and sys-
tematic resampling algorithm [12] as comparison algorithms,
and compare their performance in location tracking experi-
ments. Furthermore, their positioning errors are compared with
PCRLB under a single IMU method. The experiment simulates
a random walk process. The target node travels 100 steps from
the initial position and generates the real trajectory of the
target node motion. The proposed EER-PF algorithm generates
4000 particles near the initial position. After that, the algorithm
will predict the position of the target node for each walk,
and then generate the predicted trajectory of the target node
motion. The Euclidean distance between the predicted position
and the real position during the progress of the target node is
statistically obtained, and the error distribution curves of the
above-mentioned algorithms are obtained.
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Fig. 3. Schematic diagram of cumulative error statistics.

Fig. 4. Schematic diagram of statistical distribution of root mean square
error in 100 random walk experiments.

Fig. 3 shows the cumulative errors of the four location
tracking algorithms in a random walk experiment. It can be
seen that the positioning error of the four tracking algorithms
will increase with the movement of the target node, which
confirms the cumulative error and drift of the IMU. The
position estimation error of the proposed EER-PF algorithm is
closer to the theoretical lower limit. The maximum difference
between the unresampled algorithm and the PCRLB is 15.62m,
the maximum difference between the systematic resampling
algorithm and the PCRLB is 14.10m, and the maximum
difference between the stratified resampling algorithm and
the PCRLB is 10.90m. By contrast, the maximum difference
between the proposed EER-PF algorithm and the PCRLB
is 2.67m. The results show that the EER-PF algorithm pro-
posed in this paper can effectively suppress the increase of
cumulative error, and improve the positioning accuracy of the
IMU-based tracking method.

In order to verify the high precision and high stability of
the proposed PF algorithm, we repeated the above random
walk experiment 100 times. In each experiment, the target
node randomly walks 100 steps and uses different algorithms

Fig. 5. Cumulative function distribution curve.

to predict the true position of the single target random walk.
Finally, the RMSE and variance of the experiment were
recorded.

The RMSE distribution curve of 100 random walk exper-
iments is depicted in Fig. 4. It can be seen that the RMSE
curve of the unresampled algorithm is significantly higher than
other methods because the resampling process is a key step
of particle filtering, which can improve the effectiveness of
the particles. The algorithm based on error-ellipse-resampling
proposed in this paper can achieve higher positioning accuracy.
Table I shows the variance extremes and the average posi-
tioning error of different algorithms for positioning tracking,
where EER-PF has a maximum variance is 5.63m2 and a min-
imum variance is 0.17m2. Therefore, the proposed algorithm
has higher stability in the tracking process. The algorithm
proposed in this paper can achieve a positioning accuracy
of 1.05m. The cumulative error distribution results in Fig. 5
show that the proposed algorithm has a 50% probability of
better than 1m and a 97% probability of better than 2m. The
positioning errors of the other three algorithms are all above
1 m, it’s confirmed that the proposed error-ellipse-resampling
PF algorithm can achieve high-precision single target motion
tracking.

C. Comparison of Confidence Level and Particle Quantity

In order to compare the influence of different confidence
levels and particle numbers on the positioning accuracy of
the PF algorithm, in this experiment, we used two sets of
thresholds, the quantity of particles N and the confidence
interval (1−β1, 1−β2). We selected different particle numbers
and confidence intervals, respectively, and used the EER-PF
algorithm to track the movement of a single target. The results
of the positioning error of the experiment under different
parameters were counted. The RMSE is used to indicate the
positioning accuracy of the algorithm. In addition, in order
to compare the influence of different particle numbers on the
execution time of the proposed PF algorithm, we define the
time period from the input measurement value to the output
positioning estimation result as the execution time.
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TABLE I
ERROR COMPARISON OF DIFFERENT POSITIONING METHODS

Fig. 6. Positioning accuracy and calculation time corresponding to
different particle quantity and confidence intervals.

Fig. 6 shows the average positioning error distribution for
target tracking using different particle quantity and confidence
intervals. The number of particles is set to increase from
500 to 6000. It can be seen from the figure that when the
confidence interval variable is the same, more particles will
reduce the positioning error of the algorithm. Therefore, it is
more appropriate to chose a confidence interval (0.125,0.5).
In addition, the figure shows that the execution time of the
algorithm increases by 0.025s as the number of particles
increases by 500 each time. When the number of particles
reaches 2000, the positioning error of the algorithm tends to
be stable, so the number of particles is more suitable for 2000.

V. CONCLUSIONS

In this paper, we propose an EER-PF algorithm for target
tracking. Generally, the target’s coordinates are the most
considerable information in practical applications. As far
as EER-PF is concerned, the state vector can be muti-
dimensional, and the others states variables such as heading
angle and velocity could be auxiliary sub-vectors. As for
the error ellipse method in EER-PF, it could be regarded
as confidence interval in one-dimensional application, and
generalized to error ellipsoid, and moreover, abstract ellip-
soid in higher dimensional applications. We simulate the
random walk process of a single target, experiments prove that
the proposed EER-PF algorithm can effectively suppress the
unrestricted increase of cumulative errors. In the resampling

phase, the particle set is divided by a geometric position
using the constraints of the error ellipse, and the particle
set is reselected and copied. The problem of sample degen-
eracy and sample impoverishment of the PF algorithm is
effectively improved. The experimental results confirm that
the proposed algorithm can achieve a high-precision and
high-stability tracking process. At the same time, the choice
of confidence interval has a significant influence on the final
estimation result. Choosing the appropriate confidence interval
and particle quantity can effectively improve the positioning
performance of the algorithm.
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