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ABSTRACT The performance of acoustic source localization with array system is limited by impulsive
noise such as electromagnetic interference, car ignitions, bursting, and so on. The impulsive noise decays
with heavy-tailed distribution which can be considered as outliers. In order to alleviate the performance
degradation of traditional direction-of-arrival (DOA) estimation with impulsive noise, a novel iterative
reweighted variational Bayesian learning algorithm based on off-grid model (OG-WVBL) is proposed.
OG-WVBL employs impulsive noise as two independent components and models directly the outliers with
sparse distribution in the time domain. OG-WVBL utilizes two iterative VBL to reconstruct signal and
outliers matrix and then retrieves the DOA. Then, OG-WVBL also introduces the iteratively reweighted
strategy to hyperparameters so that the more importance is given to those hyperparameters with non-zero
entries over others which can encourage sparsity and achieve the consistent convergence. With the iteratively
reweighted strategy, OG-WVBL can automatically identify the number of sources without any prior
knowledge. Moreover, the proposed algorithm can use a coarse sampling grid to achieve the accurate DOA
estimation with the off-grid model. The experiments and simulation results show that OG-WVBL possesses
robust performance and outperforms several existing algorithms under impulsive noise environment.

INDEX TERMS DOA estimation, iterative reweighted, variational Bayesian learning, impulsive noise,
off-grid.

I. INTRODUCTION
The direction-of-arrival (DOA) estimation of multiple nar-
rowband sources is one of the main issues in the field of
array signal processing with tremendous applications, such as
radio communication, radar, sonar, seismic detection, acous-
tic source localization [1]–[4] and so on. At present, acoustic
source localization is widely applied in military and civilian
fields. In the military field, DOA estimation can not only
track vehicles, aircraft and other targets which are located
in the blind area of radar, but also detect the snipers in
real time. DOA estimation can also be exploited to video
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conferencing system and intelligent transportation, such as
monitoring whistles of car.

The conventional subspace-based DOA estimation algo-
rithms, such as MUSIC and ESPRIT [5], [6], can provide
high resolution with the Gaussian noise assumption. Many
existing DOA estimations are also based on the assump-
tion that the noise obeys Gaussian distribution [7]. Since
the Gaussian distribution has any order statistics, the tradi-
tional DOA approaches can effectively achieve the accurate
estimation according to second-order statistics [8]. However,
because of atmospheric noise, electromagnetic interference,
car ignitions, instantaneous attack of heavy objects, equip-
ment noise, and bursting in practical environments, the acous-
tic signal is usually corrupted by extremely impulsive noise
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that exhibits irregularity in time domain. In addition, the prob-
ability density functions (pdf) of impulsive noise decay
with heavy tails and do not follow common Gaussian
properties [9]. Impulsive noise possesses the characteristics
of large amplitudes and short duration. The large amplitudes
of heavy tails can be considered as outliers which have a
higher probability of occurrence. Thus, those outliers exceed
the standard deviations than Gaussian distribution [10], [11].
The traditional DOA estimations may fail in the presence of
non-Gaussian noise which does not have finite second-order
statistics. In order to deal with the heavy-tailed distribution,
several impulsive noise models have been proposed, that
is, Gaussian mixture model (GMM) [11], generalized Gaus-
sian distribution (GGD) [12], α-stable distribution [13], and
Student-t distribution [14].

Many robust DOA estimation algorithms have been
proposed to alleviate the effect of impulsive noise. The
maximum likelihood (ML) method uses GMM noise to
estimate DOA [15]. ML method is a complicated nonlin-
ear and nonconvex multi-dimensional optimization which
leads to a heavy computational complexity. Furthermore,
because α-stable distribution with α 6= 1 and α 6= 2 does
not have a closed-form expression of pdf, ML will fail to
solve it. lp-MUSIC algorithm minimizes the unconstrained
lp-norm of the residual error matrix instead of the Frobenius
norm. It adopts the alternating convex optimization to get
a closed-form expression [11]. The efficient solutions are
designed in time domain without explicitly constructing the
covariance. Although lp-norm is robust to outliers with 1 ≤
lp<2, it requires the accurate number of source.
A class of fractional lower-order statistics (FLOS) algo-

rithms exhibits a more robust performance than second order
statistics for impulsive noise. Those algorithms based FLOS
include the robust covariation in ROC-MUSIC [16], the frac-
tional lower-order moments (FLOM) based MUSIC [17] and
the phased fractional lower-order moments (PFLOM) based
MUSIC [18]. However, they are suboptimal which depend on
the relationship between the parameter of FLOS and the char-
acteristic exponent of α-stable distribution. The zero-memory
nonlinear (ZMNL) functions [19] have been used to suppress
impulsive noise by restrain the amplitude of outliers and
achieve more accurate DOA estimations than FLOS based
algorithms. This method leads to lose the potential infor-
mation of signal and destroys the low-rank property of the
subspace.

The relevant statistics use a robust kernel function
to solve impulsive noise [20]. The advantage of relevant
statistics, such as the M-estimator [10], S-estimator, or
MM-estimator [21] is exploited to construct the covariance
matrix which is less sensitive to impulsive noise. Then,
the conventional MUSIC algorithm can be applied to get the
DOA estimations. This representative approach is similar to
the fractional lower-order statistics algorithm.

Another effective DOA estimation is based on the sparse
representation [22]–[24]. Because DOA of sources is sparse
relative to the whole spatial domain, the sparse representation

methods possess many advantages compared to the tradi-
tional subspace based methods, such as the sparse represen-
tation of array covariance vector (SRACV) [25]. The sparse
representation methods can deal with correlated sources and
small snapshots and are robust against noise. Sparse Bayesian
learning (SBL) [26]–[31] is widely used in the sparse array
signal processing, which exploits the sparse recovery with
a sparse prior assumption from Bayesian inference. Com-
pared with the conventional Basis Pursuit (BP) [32], SBL can
achieve the globally optimal solution only with a few local
minimum values. Under the framework of SBL, Yang [33]
proposed an off-gird sparse Bayesian inference algorithm
(OGSBI), which can accurately estimate DOA with rough
grid intervals when the true DOA dose not locate at the
discretized grid. At the same time, OGSBI employs the singu-
lar value decomposition (SVD) to relieve the computational
complexity which makes it suitable for the multi-snapshot
scenario as well as single snapshot. Yang [34] also pro-
posed a Sparse Parametric Approach (SPA), which esti-
mates the sparse parameters in a continuous range based
on the array covariance fitting and convex optimization
criterion. Dai [35] [46] used the root of certain polyno-
mial to solve the off-gird problem and achieved high accu-
racy DOA estimation with low computational complexity.
OGSBL [46] can effectively suppress impulsive noise, but
it can not achieve the consistent convergence of hyperpa-
rameters which employ the same prior distribution. When
impulsive noise has heavy tails or GSNR is low, the number
of signal sources may not be accurately estimated. OGSBL
uses the marginal likelihood function to estimate sparse vec-
tors, which has slow convergence speed. The variational
Bayesian learning (VBL) [41]–[44] can provide effective
estimation for the distributions of unknown deterministic
parameters, which can effectively reduce the complexity and
avoid calculating the marginal distribution. The variational
expectation-maximization algorithm [45] takes advantage of
a Gaussian-Wishart hierarchical prior to solve the problem of
low-rank phase retrieval which is less sensitive to the choice
of the initialization point. In order to effectively analyze the
performance of SBL, the Cramer-Rao lower bound (CRLB)
is derived [36].

Because the traditional VBL and OGSBI algorithms are
incapable of dealing with impulsive noise directly and based
on a unified assumption with respect to the hyperparam-
eters which is difficult to identify the number of sources,
we propose a iterative reweighted variational Bayesian learn-
ing algorithm based on the off-grid model (OG-WVBL) to
effectively alleviate impulsive noise. OG-WVBL employs
impulsive noise with heavy-tailed distribution as two inde-
pendent components in the context of multiple measure-
ment vectors (MMV), and models directly the outliers with
sparse distribution in time domain. Thus, the signal and
outliers matrix can be regarded as employing the same
Gaussian prior distribution. OG-WVBL utilizes two iter-
ative VBL to reconstruct signal and outliers matrix and
then retrieves the DOA. In order to solve the inconsistent
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convergence of OGSBL [46], OG-WVBL also introduces
the iterative reweighted strategy to hyperparameters so that
the more importance is given to those hyperparameters with
non-zero entries over others which can encourage sparsity.
The reweighted vector and VBL are updated alternately to
promote convergence. With the iterative reweighted strat-
egy, OG-WVBL can automatically identify the number of
sources without any prior knowledge. Moreover, the pro-
posed algorithm can use a coarse sampling grid to achieve
the accurate DOA estimation with off-grid model. The
OG-WVBL is compared in performance with CRLB. In sum-
mary, OG-WVBL is also convenient to implement which
gives it an edge in DOA estimation performance.

The main contributions of this paper can be summarized as
follows:
1) The reweighted vector can promote convergence speed

of OG-WVBL, and ensures that OG-WVBL can accu-
rately estimate the number of sources without requiring
the prior knowledge of sources.

2) OG-WVBL brings a much small RMSE in low GSNR
with the reweighted vector and ensures the row sparsity
of signal as well as its satisfactory performance.

3) The prominent superiority is capable of identifying the
location and amplitude of impulsive noise.

4) The distribution of impulsive noise in truck environ-
ment is counted and the validity of OG-WVBL is veri-
fied by truck data.

This paper is organized as follows. In Section II, we ana-
lyze the statistical model of impulsive noise and signal model.
In Section III, we propose the robust off-grid DOA estimation
for impulsive noise processing based on weighted variational
Bayesian learning and analyze its performance. Section IV
shows experiments and simulation results. Finally, Section V
concludes this paper.

In the paper, we make full use of the following nota-
tions. (·)T, (·)H denote the transpose and Hermitian transpose,
respectively. we define diag(·) is a diagonal matrix. E[·]
represents expectation operator. <{·} represents the real part
of variable.� denotes the Hadamard product. tr(·) is the trace
of a matrix.

II. STATISTICAL MODEL OF IMPULSIVE NOISE AND
SIGNAL MODEL
A. IMPULSIVE NOISE MODEL UNDER TRUCK
ENVIRONMENT
Several statistical models have been researched to indi-
cate the temporal and spatial properties of impulsive noise
such as α-stable distribution. Nikias [13] described impul-
sive noise of atmospheric caused by thunder and light-
ning with α-stable distribution. Bian [37] proved that the
sea clutter possesses non-Gaussian distribution in sonar
applications and can be described by α-stable distribution.
Xiao [38] analyzed the characteristics of acoustic impulsive
noise. The periodic impulsive noise in narrowband powerline
communications [39] bears the sparsity in time domain and
is estimated by sparse Bayesian learning.

FIGURE 1. The time plot of impulsive noise under truck environment.

FIGURE 2. The estimated probability density function of impulsive noise.

In this section, we analyze the statistical model of impul-
sive noise under truck environment. Many acoustic noises are
instantaneous in practical environment. We use the micro-
phone array system to collect impulsive noise in the city,
such as the noise of machine, equipment startup, thunder,
instantaneous attack of heavy objects, blast of wind, and so
on. From Fig.1, noise can be partitioned into two stationary
intervals C1 and C2. The interval C1 can be regarded as
normal noise with a stationary Gaussian process. The inter-
val C2 can be considered as outliers with large amplitudes.
The proportion of interval C2 is very small in the whole
time domain. Therefore, the outliers possess sparse properties
which be considered as heavy tails of pdf. One of the goals
is to identify the location and amplitude of impulsive noise.
Fig.2 shows the estimated pdf of impulsive noise. The blue
histogram represents the true error distribution of impulsive
noise. The red curve isα-stable distribution and the blue curve
is Gaussian distribution. Gaussian distribution deviates from
the true error distribution even if around zero. However, α-
stable distribution can fit the true error distribution. When
error ranges between two and six, α-stable distribution can
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also effectively indicate error. Therefore,α-stable distribution
provides a powerful model estimation for acoustics impulsive
noise.

B. ARRAY SIGNAL MODEL
It is considered that a uniform linear array of M isotropic
sensors receives the far field signal generated by P uncorre-
lated narrowband sources. The P sources impinging on the
array from directions θ = [θ1, θ2, · · ·, θP] with powers σ 2

p ,
p = 1, 2, · · ·,P. Note that the first element is the reference
sensor. sp(t) is the complex envelope of pth source at time
t , t = 1, 2, · · ·,T . Then, the M × 1 signal vector x(t) =
[x1(t), · · ·, xm(t), · · ·, xM (t)],m = 1, 2, · · ·,M can be modeled
as [11]:

x(t) =
P∑
p=1

a(θp)sp(t)+ n(t) = A(θ )s(t)+ n(t)

= A(θ )s(t)+ w(t)+ e(t) (1)

a(θp) = [1, e−j2πdsinθp/λ, · · ·, e−j2πd(M−1)sinθp/λ]T (2)

where a(θp) is a M × 1 steering vector of the array cor-
responding to direction θp and λ is wavelength of signal.
A(θ ) = [a(θ1), a(θ2), · · ·, a(θP)] is a M × P array manifold,
s(t) = [s1(t), s2(t), · · ·, sP(t)]T is a P × 1 source vector
at time t , n(t) = [n1(t), n2(t), · · ·, nM (t)]T is a M × 1
impulsive noise vector, and they are all independent of each
other and uncorrelated with the sources. The heavy-tailed
noise can be naturally divided into mutually independent
components [39]. w(t) is the component of outliers which
involves the impulsive amplitude, and e(t) is a dense Gaus-
sian noise vector with zero-mean independent and identically
distributed (IID) entries. Note that the non-zero entities of
w(t) are greater than that of e(t), and w(t) is a sparse vector
wheremost of entities are zero. In practice, the received signal
model (1) can also be rewritten as (3) by using the T available
samples:

X = A(θ )S+ N = A(θ )S+W + E (3)

where

X = [x(1), x(2), · · ·, x(T )]

S = [s(1), s(2), · · ·, s(T )]

N = [n(1),n(2), · · ·,n(T )]

W = [w(1),w(2), · · ·,w(T )]

E = [e(1), e(2), · · ·, e(T )] (4)

where X is the M × T matrix of the sources received by the
array sensors. S is the P×T matrix of the sources. There is an
assumption that the numberM of the array elements is greater
than the number P of the sources.

We also re-derive the off-grid model [33] by using
first-order Taylor series expansion and it can provide a sub-
optimal array manifold compared with the on-grid one. The
potential spatial domain is discretized as a fixed sampling
grid θ̂ = {θ̂1, θ̂2, · · ·, θ̂N } with the DOA range [−π/2, π/2],

and N represents the grid number which typically satisfies
N � M . At the same time, sampling grid θ̂ is a r = θ̂2− θ̂1 =
π/(N−1) uniform angular interval. If θp /∈ {θ̂1, θ̂2, ···, θ̂N } for
some p ∈ {1, 2, · · ·,P}, θ̂np , np ∈ {1, 2, · · ·,N }, is the nearest
grid point to the true direction θp. We derives the steering
vector a(θp) from first-order Taylor series expansion:

a(θp) ≈ a(θ̂np )+ b(θ̂np )(θp − θ̂np ) (5)

where b(θ̂np ) is the derivative of a(θ̂np ). A = [a(θ̂1), a(θ̂2), · ·
·, a(θ̂N )] is the primary on-grid array manifold, B =

[b(θ̂1), b(θ̂2), · · ·, b(θ̂N )] is the derivative matrices of A, β =
[β1, β2, ···, βN ] ∈ [− 1

2 r,
1
2 r]

N is the bias of grid and8(β) =
A+ Bdiag(β) is the off-grid array manifold.

βn = θp − θ̂np ,

ŝn(t) = snp (t), if n = np for any p ∈ {1, 2, · · ·,P};

βn = 0, ŝn(t) = 0, otherwise (6)

When the approximation error aligns to the measurement
noise, the signal model in (1) and (3) can be modeled as:

x(t) = 8(β)ŝ(t)+ n(t)

= 8(β)ŝ(t)+ w(t)+ e(t) (7)

X = 8(β)Ŝ+W + E (8)

It should be noted that the off-grid dictionary in (7) is
closely consistent with the primary on-grid one if β = 0.
As a consequence, the off-grid model has a much smaller
estimation error than the on-grid one. On the other hand,
coarser sampling intervals can effectively reduce computa-
tional complexity with comparable modeling accuracy.

III. OFF-GRID ITERATIVE REWEIGHTED VARIATIONAL
BAYESIAN LEARNING
In the presence of outliers matrix W , the pdf of n(t) has
heavier tails than the Gaussian distribution, which will have a
few large outliers. In order to achieve the robustness of DOA
estimation, we need to not only estimate the sparse signals
ŝ(t), t = 1, 2, · · ·,T , but also identify the sparse outliers
W . To mitigate impulsive noise, we exploit the DOA problem
in time domain based on the iterative reweighted variational
Bayesian learning methods, and apply a fixed-point iteration
approach to jointly estimate Ŝ andW . In this paper, to achieve
the robustness of OG-WVBL, we assign different parameters
of Gamma distribution to hyperparameters, and give more
importance to some hyperparameters over others.

A. UPDATE Ŝ PROCEDURE FOR OG-WVBL
The model of iterative reweighted variational Bayesian learn-
ing is shown as Fig.3. We update the hidden variable Ŝ while
considering the outliers matrix W as a fixed sparse matrix.
The signal model is represented as:

X̄ = X −W = 8(β)Ŝ+ Ē (9)

X̄ is the optimized observation which does not contain
the outliers W . Ē that is equivalent to E is a white complex
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FIGURE 3. The iterative model of reweighted variational Bayesian
learning.

Gaussian noise with zero-mean independent and identically
distributed (IID) entries:

p(Ē|ν0) =
T∏
t=1

CN (e(t)|0, ν−10 I) (10)

where ν0 = σ−2 denotes the noise precision, and σ 2 is
the noise variance. Then, p(X̄ |Ŝ, ν0,β) also follows complex
Gaussian distribution.

p(X̄ |Ŝ, ν0,β) =
T∏
t=1

CN (x̄(t)|8(β)ŝ(t), ν−10 I) (11)

The hyperparameter ν0 is usually unknown in practice.
A Gamma hyperprior is used for ν0:

p(ν0; a, b) = 0(ν0|a, b) (12)

where 0(ν0|a, b) = [0(a)]−1baνa−10 exp(−bν0) and 0(·) is
Gamma function which is used as a conjugate prior distri-
bution of VBL. Parameter a is the shape parameter, and b is
the scale parameter of Gamma distribution. The parameter
influences how the pdf is concentrated. The pdf will be
concentrated around zero if parameter a reach a small value,
otherwise; the PDF is concentrated around its single mode
(i.e., a−1b ) with large values of a. In addition, the larger the
parameter b, the narrower the pdf.

Following the VBL principle, Ŝ is a row sparse matrix, and
we assume that Ŝ follows the complex Gaussian prior for each
ŝ(t). We have two-stage hierarchical prior with hyperparam-
eters vector ν:

p(Ŝ|ν) =
T∏
t=1

CN (ŝ(t)|0,3−1) (13)

where ν = [ν1, ν2, · · ·, νN ]T and 3 = diag(ν). All columns
of Ŝ are independent and the hyperparameter νn is modeled
as independent Gamma distribution. For a larger νn, ŝi(t)
has a smaller variance with high probability ŝi(t) being zero.
In order to keep in line with characteristic of row sparsity,
we assign different parameters of Gamma distribution to
hyperparameters ν corresponding to apply different weights
to different row vectors of the sparse matrix Ŝ. The iterative

reweighted VBL turns out to be more importance for some
hyperparameters over others, and make robust estimation of
desired signal direction θ . Because it is the conjugate prior
for the precision of a univariate Gaussian. The independent
Gamma hyperprior of ν with different parameters cn, dn can
be modeled as:

p(ν; c, d) =
N∏
n=1

0(νn|cn, dn) (14)

A uniform prior is assumed for β:

β ∼ U ([−
1
2
r,

1
2
r]N ) (15)

On the basis of Bayes’ rule in Fig.3, the joint probability
function of all parameters combined with the above probabil-
ity distribution (12), (13), (14), (15) is

p(X̄, Ŝ, ν0, ν,β)=p(X̄ |Ŝ, ν0,β)p(Ŝ|ν)p(ν)p(ν0)p(β) (16)

Consider a probabilistic model with the optimized obser-
vation X̄ , hidden variables Ŝ, the unknown deterministic
hyperparameters 20 = {ν0, ν,β}, 2 = {Ŝ,20}. According
to variational Bayesian inference, the probability distribution
X̄ can be decomposed into two independent terms with an
arbitrary probability density function q(2) [41]:

ln(p(X̄)) =
∫
q(2)ln(p(X̄))d2

= ln
p(X̄,2)
q(2)

− ln
p(2|X̄)
q(2)

= L(q(2))+ KL(q(2)|p(2|X̄)) (17)

where

L(q(2)) =
∫
q(2)ln

p(X̄,2)
q(2)

d2 (18)

and

KL(q(2)|p(2|X̄)) = −
∫
q(2)ln

p(2|X̄)
q(2)

d2 (19)

KL(q(2)|p(2|X̄)) is the Kullback-Leibler divergence
which indicates the similarity between the probability dis-
tribution q(2) and the posterior distribution p(2|X̄). The
smaller the Kullback-Leibler divergence, the higher the simi-
larity between q(2) and p(2|X̄). The log-likelihood function
lnp(X̄) is only related to the optimized observation X̄ , which
is unaffected by parameters2. SinceKL(q(2)|p(2|X̄)) ≥ 0,
L(q(2)) is a lower bound on ln(p(X̄)). When the probability
distribution q(2) equals the posterior distribution p(2|X̄),
L(q(2)) achieves maximum. Because KL(q(2)|p(2|X̄))
bears on the posterior distribution p(2|X̄) which does
not have the closed-form expression, it is usually diffi-
cult to directly minimize the Kullback-Leibler divergence
KL(q(2)|p(2|X̄)). To solve this problem, we alternatively
maximize its lower bound L(q(2)). Therefore, VBL alter-
natively maximizes L(q(2)) with respect to q(Ŝ) and q(20)
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by using EM methodology. First, the current probability dis-
tribution qold (20) of hyperparameters 20 is fixed, the hid-
den variables Ŝ is updated by maximizing L(q(Ŝ), qold (20)),
which is regarded as the maximization step. Then, the current
hidden variables Ŝ

old
is fixed, the hyperparameters 20 is

updated by maximizing L(qold (Ŝ), q(20)), which is regarded
as the expectation step. OG-WVBL solves sparse vectors by
maximizing the lower bound L(q(2)), avoiding calculating
the marginal likelihood function.

To facilitate the optimization of L(q(2)), the unknown
probability distribution q(2) is factorized by using the mean
field approximation of VBL [41]:

q(2) = q(Ŝ)q(ν0)q(ν)q(β) (20)

An alternating fashion for each latent variable can be
expressed as [41]:

lnq(2k ) = E[lnq(X̄,2k )q(2\2k )]+ const (21)

where2\2k denotes the set2without2k . The additive con-
stant in (21) can be commonly obtained through normaliza-
tion by

qi(2i) =
exp(E[lnp(X̄,2)]j 6=i)∫
exp(E[lnp(X̄,2)]j 6=i)d2i

(22)

Since the numerical integration in the denominator is gen-
erally intractable, we choose conjugate prior distributions for
each latent variables. According to (21) and the correspond-
ing priori knowledge, EM rules is applied to each latent
variable.

1) UPDATE OF Ŝ

ln qŜ(ŝ(t))

= E[ln(p(x̄(t)|ŝ(t))p(ŝ(t)|ν))]qν (ν)qν0 (ν0) + const

∝ E[−ν0(x̄(t)−8(β)ŝ(t))H(x̄(t)−8(β)ŝ(t))

− ŝH(t)3ŝ(t)]

∝ E[−ŝH(t)(ν08H(β)8(β)+3)ŝ(t)

+ ν0(ŝ
H(t)8H(β)x̄(t)+ x̄H(t)8(β)ŝ(t))] (23)

From (23), it can be deduced that ŝ(t) follows a complex
Gaussian distribution

qŜ(ŝ(t)) = CN (ŝ(t)|µ̄(t), 6̄) (24)

with its mean µ̄(t) and covariance matrix 6̄ given as

µ̄(t) = ν06̄8H(β)x̄(t) (25)

6̄ = (ν08H(β)8(β)+3)−1 (26)

Note that µ̄(t) and 6̄ are the optimal posterior mean and
covariance of ŝ(t). Therefore, µ̄(t), t = 1, 2, · · ·,T is used to
update Ŝ:

Ŝ = [µ̄(1), µ̄(2), · · ·, µ̄(T )] (27)

2) UPDATE OF ν
Similarly, for the variational inference, the approximate pos-
terior qν(ν) can be obtained as

ln qνn (νn)

= E[ln(
T∏
t=1

p(ŝn(t)|νn)p(νn))]qŜ(Ŝ)qν0 (ν0)
)+ const

∝ E[(T + 2(cn − 1))lnνn

− (2dn +
T∑
t=1

(‖µ̄n(t)‖22 + 6̄nn))νn] (28)

According to (28), the posterior of νn follows a Gamma
distribution.

qνn (νn) = 0(T + 2cn − 1, 2dn +
T∑
t=1

(‖µ̄n(t)‖22 + 6̄nn))

(29)

Therefore, νn can be updated by its derivatives:

νnewn =
T + 2cn − 2

T∑
t=1

(‖µ̄n(t)‖22 + 6̄nn)+ 2dn

(30)

3) UPDATE OF ν0
The posterior distribution of noise precision ν0 can be simi-
larly updated as:

ln qν0 (ν0)

= E[ln(
T∏
t=1

p(x̄(t)|ŝ(t), ν0)p(ν0))]qŜ(Ŝ)qν (ν)
)]+ const

∝ E[(TM + 2a− 2)lnν0

− (2b+
T∑
t=1

(‖x̄(t)−8(β)µ̄(t)‖22+ tr(8H(β)8(β)6̄)))ν0]

(31)

According to (31), the posterior of ν0 follows a Gamma
distribution.

qν0 (ν0) = 0(TM + 2a− 1,

2b+
T∑
t=1

(‖x̄(t)−8(β)µ̄(t)‖22+ tr(8H(β)8(β)6̄))

(32)

The noise precision ν0 for the optimized observation X̄ is
updated by:

νnew0 =
TM + 2a− 2

2b+
T∑
t=1

(‖x̄(t)−8(β)µ̄(t)‖22+ tr(8H(β)8(β)6̄)

(33)

For β, it maximizes (21) is equivalent to minimizing the
following expression:

E[
1
T

T∑
t=1

‖x̄(t)− (A+ Bdiag(β))ŝ(t)‖22]
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=
1
T

T∑
t=1

‖x̄(t)− (A+ Bdiag(β))ŝ(t)‖22

+Tr{(A+ Bdiag(β))6̄(A+ Bdiag(β))H}

= βTPββ − 2κTβ + C (34)

where C is a constant term, Pβ is a positive semidefinite
matrix.

Pβ = <{BHB� (
1
T

T∑
t=1

µ̄(t)µ̄H(t)+ 6̄)} (35)

κ = <{
1
T

T∑
t=1

diag(µ̄(t))BH(x̄(t)− Aµ̄(t))}

−<{diag(BHA6̄)} (36)

where BHB is the complex conjugate. Because a closed-form
expression of β cannot be given, we can get

βnew = arg min
β∈[− 1

2 r,
1
2 r]

N
{βTPββ − 2κTβ} (37)

For VBL, the lower bound L(q(2)) [42] is used as the
convergence criterion to accelerate the convergence speed
and ensure the effectiveness of OG-WVBL.

L(q(2)) ∝ E[ln(p(x̄(t)|ŝ(t))]+ E[lnp(ŝ(t)|ν))]

+E[lnp(ν))]+ E[lnp(ν0))]− E[lnq(ŝ(t))]

−E[lnq(ν))]− E[lnq(ν0))] (38)

B. UPDATE W PROCEDURE FOR OG-WVBL
As an alternate process, we update the outliers W while
considering the hidden variable Ŝ as a fixed sparse matrix.
As is shown in Fig.1, the signal model is represented as:

X̃ = X −8(β)Ŝ = W + Ẽ (39)

It is clear that the dense Gaussian noise matrix Ẽ is equiv-
alent to Ē in (9). However, the noise precision ν0 of Ē is
relevant to Ŝ. Therefore, we employ a distinct hyperparameter
ξ0 to derive the outliersW instead of ν0:

p(Ẽ|ξ0) =
T∑
t=1

CN (ẽ(t)|0, ξ−10 I) (40)

The hyperparameter ξ0 is usually unknown in practice.
A Gamma hyperprior for ξ0 is similar to ν0:

p(ξ0; a, b) = 0(ξ0|a, b) (41)

The entries of the outliersW are sparse distribution. A few
elements possess large amplitudes, however, most of the
elements approach zero. There is no correlation between ele-
ments over time which means thatW is not rows sparsity. The
hierarchical prior model of Ŝ can not be directly employed
for W . We assume that each element has independent statis-
tics that can follow an IID Gaussian prior distribution with
hyperparameter matrix ξ , i.e.,

p(W |ξ ) =
M∑
m=1

T∑
t=1

CN (wm(t)|0, ξ−1mt ) (42)

The hyperparameter ξmt is modeled as independent
Gamma distribution with different weighted parameters emt
and fmt , i.e.,

p(ξ ; e, f ) =
M∑
m=1

T∑
t=1

0(ξmt |emt , fmt ) (43)

Each element ξmt has different posterior because it is not
fixed.Without loss of generality, the distribution (42) is a gen-
eral expression of the one (13) so that it can handle different
forms of W . If there is impulsive noise arriving at time t ,
the elements in the tth column of ξ will be automatically
occupied by outliers. In this case, since each hyperparameter
ξmt has a different Gamma distribution, it is reasonable to give
each ξmt different Gamma parameters, which can guarantee
the accuracy of DOA estimation. Then, we have

p(X̃ |W , ξ0) =
T∑
t=1

CN (x̃(t)|w(t), ξ−10 I) (44)

where x̃(t) and w(t) denote the tth column of X̃ and W ,
respectively.
Similarly, for the variational inference, EM methodology

is alternatively applied to update parameters {W , ξ , ξ0}.

1) UPDATE OF W
The posterior distribution of hidden variables W can be
updated as:

ln qW (w(t))
= E[ln(p(x̃(t)|w(t))p(w(t)|ξ t ))]qξ t (ξ t )qξ0 (ξ0) + const

∝ E[−ξ0(x̃(t)− w(t))H(x̃(t)− w(t))
−wH(t)diag(ξ t )w(t)]

∝ E[−wH(t)(ξ0IM + diag(ξ t ))w(t)
+ ξ0(wH(t)x̃(t)+ x̃H(t)w(t))] (45)

From (45), it can be deduced that w(t) follows a complex
Gaussian distribution. Then, the posterior distribution of out-
liersW is:

qW (w(t)) =
T∑
t=1

CN (w(t)|µ̃(t), 6̃(t)) (46)

where

µ̃(t) = ξ06̃(t)w(t) (47)

6̃(t) = (ξ0IM + diag(ξ t ))
−1 (48)

TheW is updated by:

W = [µ̃(1), µ̃(2), · · ·, µ̃(T )] (49)

2) UPDATE OF ξ
Similarly, the approximate posterior qξ (ξ ) can be obtained as:

ln qξmt (ξmt )
= E[ln(p(wm(t)|ξmt )p(ξmt ))]qW (W )qξ0 (ξ0)

+ const
∝ E[(2emt − 1)lnξmt
− (2fmt + ‖µ̃m(t)‖22 + (ξ0 + ξmt )−1)ξmt ] (50)
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From the above equation, the posterior of ξmt follows a
Gamma distribution, that is

qξmt (ξmt ) = 0(2emt , 2fmt + ‖µ̃m(t)‖
2
2 + (ξ0 + ξmt )−1) (51)

Therefore, ξmtcan be updated by its derivatives:

ξnewmt =
2emt − 1

2fmt + ‖µ̃m(t)‖22 + (ξ0 + ξmt )−1
(52)

3) UPDATE OF ξ0
The variational optimization of qξ0 (ξ0) yields

ln qξ0 (ξ0)

= E[ln(
T∏
t=1

p(x̃(t)|w(t), ξ0)p(ξ0))]qW (W )qξ (ξ ) + const

∝ E[(TM+2a− 2)lnξ0

− (2b+
T∑
t=1

‖x̃(t)−µ̃(t)‖22+
T∑
t=1

M∑
m=1

(ξ0+ξmt )−1)ξ0]

(53)

From the above equation, the posterior of ξ0 follows a
Gamma distribution, that is

qξ0 (ξ0) = 0(TM + 2a− 1,

2b+
T∑
t=1

‖x̃(t)−µ̃(t)‖22+
T∑
t=1

M∑
m=1

(ξ0+ξmt )−1) (54)

Following the similar evidence procedure for updating ν0,
the hyperparameters ξ0 is updated as:

ξnew0 =
TM+2a− 2

2b+
T∑
t=1
‖x̃(t)−µ̃(t)‖22+

T∑
t=1

M∑
m=1

(ξ0+ξmt )−1
(55)

The properties of variational Bayesian learning guarantee
the convergence of these parameters, as well as, the Kullback-
Leibler divergence decreases continuously with the iteration
process.

C. ITERATIVE REWEIGHTED STRATEGY
Typically, the goal of OG-WVBL is formulated as searching
the optimal hyperparameters of ν and ξ with the mini-
mum number of non-zero entries. OG-WVBL applies dif-
ferent prior distributions to each element of sparse vectors
by means of the iterative reweighted strategy, thus ensur-
ing that the sparse model is consistent with the actual sig-
nal model. The iterative reweighted strategy of OG-WVBL
eliminates the mutual influence of different signal compo-
nents, and the reconstruction accuracy of each sparse vector
is improved in the process of signal reconstruction. Com-
pared with OGSBL [46], VBL is combined with the iterative
reweighted strategy in this paper. OG-WVBL adjusts the
iterative reweighted strategy by the sparse result of VBL, and
control the priori distribution of hyperparameters of VBL by
the iterative reweighted strategy. In the variational Bayesian
learning, the sparse entries of Ŝ andW is usually assumed the

Algorithm 1 Off-Grid Iterative Reweighted Variational
Bayesian Learning
1) Input: X , 8(θ )
2) Initialization: Set ν00 = ξ00 = 1, ν0 = 1

ω̂2 N×1
, ξ0 =

1

1̂
2
M×T

, Ŝ
0
= 0N×T , W0

= 0M×T , a = 1.0001, b =

10−4, ε = 10−3, h = 0
3) While not converge do the following:

a) Calculate X̄ = X −Wh according to (9)
b) Calculate µ̄(t) and 6̄ by (25) and (26),
respectively
c) Update νh+10 and νh+1 using (33) and (30),
respectively
d) Update Ŝ

h+1
= [µ̄(1), µ̄(2), · · ·, µ̄(T )] and ω

e) Calculate X̃ = X −8(β)Ŝ
h+1

according to (39)
f) Calculate µ̃(t) and 6̃ by (47) and (48), respectively
g) Update ξh+10 and ξh+1 using (54) and (52),
respectively
h) UpdateWh+1

= [µ̃(1), µ̃(2), · · ·, µ̃(T )] and 1
i) Let iteration h = h+ 1 and continue (goto Step-3a)
until
‖L(q(2))h − L(q(2))h−1‖2/‖L(q(2))h−1‖2 < ε

4) Output: Ŝ
h
andWh

same probability distribution which means that they employ
the same hyperparameters of νn and ξmt . However, we realize
that only a few of Ŝ and W is non-zero entries, and most
entries close to zero [40]. In particular, there are very few
non-zero entries with large amplitudes inW . So giving more
importance to those hyperparameters with non-zero entries
over others, the different hyperparameters are assigned to
the sparse entries of Ŝ and W that encourage sparsity. The
reweighted vector and VBL are updated alternately to pro-
mote convergence. With the iterative reweighted property,
OG-WVBL can automatically identify the number of sources
without any prior knowledge.

Assume that two reweighted vectors ω and 1 are used
to represent Ŝ and W , respectively. If ωn or 1mt holds a
relatively large value, Ŝn and Wmt will be non-zero. Usually,
we can set cn = 1/ωn, dn = ωn, emt = 1/1mt , and
fmt = 1mt . For the sake of simplicity, we will only analyze
the relationship betweenω and Ŝ. Ifωn holds a relatively large
value, the pdf of νn will be concentrated around zero which
means that νn will reach to zero with higher probability, thus
corresponding Ŝn is non-zero with higher probability. Other-
wise, if ωn holds a small value, the pdf of νn is concentrated
around its single mode ( 1−ωn

ω2
n
≈

1
ω2
n
), thus corresponding Ŝn

is zero with higher probability. We can choose a threshold η
which ranges between 0 and 1

ω̂2 to differentiate between zero
and non-zero element νn where ω̂ is the smallest entry of ω.
With a suitable threshold, it is easy to identify the number of
sources corresponding to the number of non-zero values in Ŝ.
In the traditional VBL algorithm, the convergent hyperparam-
eter νn possesses a large interval with zero element Ŝn. It is
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difficult for the traditional VBL to select a suitable threshold
to distinguish between zero and non-zero element νn.
Initially, the hyperparameters ν and ξ are set to 1

ω̂2 and
1
1̂2 .

Usually, the reweighted vector ω and 1 comprise of 0.1 and
1 [40]. Therefore, in order to obtain a broad prior over the
hyperparameters, all elements of ω and 1 are set to larger
values. Therefore, we can obtain a broad prior over the
hyperparameters. Of course, if some rough estimations of Ŝ
can be held, we set element ωn to 0.1 with large value Ŝn.
We can update the reweighted vector ω and 1 with a poste-
riori value Ŝ in (27) and W in (49) to adjust the parameters
of Gamma function, then the hyperparameters ν and ξ are
automatically adjusted. Therefore, the reweighted vector can
promote convergence speed of OG-WVBL, and ensures that
OG-WVBL can accurately estimate the number of sources
without requiring the prior knowledge of sources. For clarity,
we summarize our algorithm as ALGORITHM.

D. ANALYSIS OF PERFORMANCE
The computational complexity of 6̄ and 6̃ in each iteration
with Woodbury matrix identity are O(MN 2) and O(TM ),
respectively. The computational complexity of µ̄(t) and µ̃(t)
in each iteration are O(TN 2) and O(TM2), respectively. The
hyperparameters ν0 and ξ0 in each iteration need O(TMN )
and O(TM ) operations, respectively. The hyperparameters ν
and ξ in each iteration need O(TN ) and O(TM ) operations,
respectively. Thus, the whole computational complexity is
O(MN 2

+ TN 2
+ TMN + TM2).

IV. EXPERIMENT
A. IMPULSIVE NOISE MODE AND PERFORMANCE
PARAMETER
In this experiment, we compare the performance of OG-
WVBL, OGVBL, OGSBL [46], OGSBI [33], conventional
VBL [42], FLOM-MUSIC [17], and lp-MUSIC [11], as well
as CRLB. OGVBL, which does not use the reweighted
parameter, is a simplified version of OG-WVBL.We evaluate
the performance of those algorithms from several aspects,
namely, spectrum, convergence characteristic ν, generalized
signal-to-noise ratio (GSNR), different characteristic expo-
nents of α-stable distribution, angular separation of two direc-
tion angles, and grid interval. The FLOM-MUSIC and lp-
MUSIC adopt both 0.2◦ resolution of grid with MUSIC
algorithm. Then, FLOM-MUSIC and lp-MUSIC use the same
fractional lower-order moments p = 1.2 to achieve a robust
estimation. The emitting sources are two independent acous-
tic sources. The linear array is set to M = 8 omnidirectional
acoustics sensors which are placed in half of the wavelength
at the center frequency of the signal. The two sources imping-
ing on the array from directions θ1 = −16◦ and θ2 =
15◦. The symmetric α-stable distribution (SαS) is used to
model impulsive noise. In every experiment, 2000 Monte-
Carlo (MC) runs are performed.

Impulsive noise is usually expressed as the symmetric
α-stable distribution. Its characteristic function is defined as:

φ(t) = exp(−γ |t|α) (56)

where α is the characteristic exponent which describes the
tails of the distribution with intervals (0 ≤ α < 2).
Moreover, the smaller α becomes, the more impulsive will
non-Gaussian noise be. γ is the dispersion. When charac-
teristic α = 2, it reduces to the Gaussian distribution.
Since the second-order and higher-order moments of SαS
are infinite for α < 2, the common signal noise ratio (SNR)
is meaningless. To quantify the relative strength between
signal and impulsive noise, a generalized SNR (GSNR) can
be expressed as:

GSNR = E[|s(n)|2]/γ α (57)

RMSE is the deviation criterion between observation and
true value and can be given by:

RMSE =

√√√√√ L∑
l=1

(θ̂1(l)− θ1)2 +
L∑
l=1

(θ̂2(l)− θ2)2

2L
(58)

where L represents the total number ofMC run. θ̂1(l) and θ̂2(l)
are the estimations of θ1 and θ2 in the MC run, respectively.
The resolution probability is that the two sources are

resolvable if maxp=1,2{θ̂p − θp} < |θ1 − θ2|/2.
Kozick has come to a closed-form expression of CRLB for

impulsive noise [15], which can be expressed as:

C RLB =
1
Ic
{

T∑
t=1

<[SHd (t)D
H(I − A(AHA)−1AH)DSd (t)]}−1

(59)

where Sd (t) = diag(s1(t), s2(t), · · ·, sP(t)) is a diagonal
matrix of the received signal, D = [ ∂a(θ1)

∂θ1
, · · ·,

∂a(θP)
∂θP

] is
the differential of the array manifolds A. The coefficient Ic
can be expressed as Ic =

∫
∞

0
(f ′(x))2

f (x) xdx where x = |n| is
the modulus of impulsive noise. f (x) is pdf of x. Note that
I1 = 1

2γ with α = 1 and I2 = 3
5γ 2

with α = 2. For simplicity,
the coefficient Ic for 1 < α < 2 can be approximated by first
order linear interpolation with I1 and I2 [11] .

B. CONVERGENCE OF HYPERPARAMETERS
Fig.4 shows that hyperparameters ν of OGSBL, OGVBL and
OG-WVBL after convergence where α = 1.4, GSNR = 8
and snapshots T = 100. In order to get the prior reweighted
vector ω, MUSIC algorithm was used to estimate Ŝ based on
20 snapshots in each trial. It can be easily seen that the hyper-
parameter νn can take any value in OGSBL and OGVBL after
convergence. Consequently, it is difficult to select a suitable
threshold to distinguish between zero and non-zero elements
νn. However, most values νn of OG-WVBL are concentrated
around 100 corresponding to Ŝn will be considered as zero.
With a suitable threshold such as η = 1, OG-WVBL is easier
to identify the number of sources than OGSBL and OGVBL
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FIGURE 4. The values of hyperparameters ν after convergence for
OG-WVBL, OGVBL, and OGSBL algorithms.

FIGURE 5. The RMSE comparison of different algorithms in SαS noise
versus GSNR.

which is based on a unified assumption with respect to the
hyperparameters. Therefore, OG-WVBL can reach perfect
performance than OGSBL and OGVBL at relatively low
GSNR.

C. PERFORMANCE COMPARISON
Figs.5 analyzes the RMSE of the DOA estimation of different
algorithms in SαS noise versus GSNR where α = 1.5 and
snapshots T = 200. The performance of those algorithms is
improved as GSNR increases. Besides, OG-WVBL achieves
a smaller reconstruction error in comparison with OGSBL
and OGVBL as GSNR decreases. Thus, OG-WVBL will
remain stable in low GSNR. When GSNR = 12, all algo-
rithms are close to the approximated CRLB, that is, impulsive
noise has little effect on the performance except OGSBI
and VBL. The traditional OGSBI and VBL almost fail to
reconstruct the sparse signal in low GSNR.

Fig.6 depicts the performance of different algorithms when
DOA of the second source is gradually away from that of

FIGURE 6. The probability of resolution of different algorithms in SαS
noise versus angular separation.

the first source where α = 1.5, GSNR = 8 and snapshots
T = 200. The first DOA is θ1 = −16◦. As expected,
the OG-WVBL can effectively differentiate the two sources
with 5◦ angle separation. Furthermore, OG-WVBL requires
a smaller angle separation threshold than other algorithms
associated with a fixed probability of resolution. OGSBL
and OGVBL also exhibit excellent performance in dealing
with impulsive noise. However, the performance of VBL and
OGSBI is relatively poor because they have no ability to
suppress impulsive noise.

In this simulation, we aim at evaluating the performance
of the characteristic exponent α on the basis of RMSE where
GSNR = 8 and snapshots T = 200. As was mentioned
before, the heavy tails of impulsive noise are controlled by the
characteristic exponentα. It is clear fromFig.7 that the RMSE
of these algorithms decreases as α increases. OG-WVBL
which is based on a heavy-tailed distribution achieves a better
reconstruction performance, when compared with OGSBI
and VBL. Moreover, the smaller α becomes, the worse will
the performance of OGSBI and VBL be. When the character-
istic exponent α is 2, noise follows Gaussian distribution and
all algorithms can achieve better performance.

Fig.8 and Fig.9 show that the performance of different
algorithms in SαS noise versus grid intervals where α = 1.5,
GSNR = 8 and snapshots T = 200. With the increase
of grid interval, OGSBI and VBL have a poor performance
on describing the true observation model. OG-WVBL has a
relatively stable RMSE which means that OG-WVBL results
in a much accurate solution and a low complexity whenwork-
ing in a coarse grid. The computational time of OG-WVBL
will slightly decrease as grid interval increases because the
complexity of updating the outliers W remains constant.
Because OGVBL adopts two iterative VBL, its complex-
ity is greater than that of OGSBI. Owing to the weighted
strategy, OG-WVBL needs less iteration after convergence,
so that, it requires less computational time than OGSBL and
OGVBL.
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FIGURE 7. The RMSE comparison of different algorithms in SαS noise
versus characteristic exponent α.

FIGURE 8. The RMSE comparison of different algorithms in SαS noise
versus grid interval.

Above simulation results show that the proposed algorithm
is valid for the sparse signal recovery in the presence of the
SαS noise.

D. DEMONSTRATION OF TRUCK SYSTEM
In order to evaluate the stability performance, we perform
three independent trials in impulsive noise environment with
three trucks. From Fig.10, three standard truck sources are
produced from Bluetooth speakers which are located at
[−16◦, 0◦, 15◦]. Impulsive noise is composed of the noise
of machine, equipment startup, instantaneous attack of heavy
objects, blast of wind, clapping and so on which can refer
to Fig.1. The grid interval is set to 2◦ for OG-WVBL and
OGSBI. We employ three segment data where each segment
composed of 1000 samplings. Fig.11 shows that the OGSBI
can not accurately estimate DOA every trial, and the per-
formance severely degrades in impulsive noise environment.
However, OG-WVBL is less sensitive to impulsive noise

FIGURE 9. The computational time comparison of different algorithms in
SαS noise versus grid interval.

FIGURE 10. Acoustic array scenario with impulsive noise environment,
M = 8.

FIGURE 11. Spatial spectrum of three independent trials in impulsive
noise environment with three truck, M = 8.

every trial. At the same time, the originally received data of
the reference sensor is displayed with one of experiments and
the location of impulsive noise is estimated by OG-WVBL
at the last figure of Fig.11. The impulsive noise comes from
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420-455ms data of Fig.1. It can be seen that the OG-WVBL
can also effectively identify the impulsive noise.

V. CONCLUSION
In this paper, we propose a method of sparse representation
for highly impulsive noise with heavy tails, based on a varia-
tional Bayesian learning framework. Impulsive noise in truck
environment is modeled as α-stable distribution. OG-WVBL
employs impulsive noise as two independent components,
and models directly the outliers with sparse distribution in
time domain. OG-WVBL utilizes two iterative VBL to recon-
struct signal and outliers matrix and then retrieves the DOA.
OG-WVBL also introduces the reweighted vector to hyper-
parameters so that the more importance is given to those
hyperparameters with non-zero entries over others which can
encourage sparsity. The experiments and simulation results
show that OG-WVBL possesses robust performance and
outperforms several existing algorithms under the impulsive
noise environment. Because the heavy tails of impulsive noise
can be treated as a sparse matrix, OG-WVBL is not only
suitable for α-stable distribution, but also can effectively deal
with other impulsive noise models.
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