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Motion related human activity recognition using wearable sensors can potentially enable various useful daily applications. So far,
most studies view it as a stand-alone mathematical classification problem without considering the physical nature and temporal
information of human motions. Consequently, they suffer from data dependencies and encounter the curse of dimension and the
overfitting issue. Their models are hard to be intuitively understood. Given a specific motion set, if structured domain knowledge
could be manually obtained, it could be used for better recognizing certain motions. In this study, we start from a deep analysis
on natural physical properties and temporal recurrent transformation possibilities of human motions and then propose a useful
Recurrent Transformation Prior Knowledge-based Decision Tree (RT-PKDT) model for recognition of specific human motions.
RT-PKDT utilizes temporal information and hierarchical classification method, making the most of sensor streaming data and
human knowledge to compensate the possible data inadequacy.The experiment results indicate that the proposedmethod performs
superior to those adopted in related works, such as SVM, BP neural networks, and Bayesian Network, obtaining an accuracy of
96.68%.

1. Introduction

Human motion related activity recognition (HAR) is one
of the most promising research topics for a variety of areas
and has been drawing more and more researchers’ attention.
With the booming of Internet of Things (IoTs), sensors
have been widely used in HAR applications, due to the
advantages of no need to deploy in advance, smaller data
volume, lower cost, and power consumption. Sensors-based
HAR stands out among various technologies [1–3] and has
been drawing tremendous attention and applied into a variety
people centric application areas, such as medical care [1],
emergency rescue [2], and smart home surveillance [3].

However, obtaining sufficient information from sensor
data sequences to recover the parameters of body motion
correctly is a challenging task for two reasons. The first is
the large number of degrees of freedom in human body

configurations, resulting in high computational loading, and
the second is the large variability and uncertainty in motor
movements employed for a given motion.

To solve the first problem, most related works use data-
driven methods which tend to take the advantage of multiple
sensors [4], such as accelerometer, gyroscope, compass sen-
sor, and humidity sensor, to name but a few, to enlarge the
input data set to achieve more information. More than one
sensor node is mounted onto different body-parts to monitor
human motions with multiple degrees of freedom. In [5],
Stiefmeier studied how sensors bounded to different body-
parts, such as Torso, sleeve, arm, and hand, contribute to
the recognition of complex human motions. Above methods
somehow expand the data source; however, the introduction
of redundant data may not only lead to extra burden on
computational capability, but also cause dimension disaster
problem [6] which on the contrary degrades the classifier’s
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performance. Data-driven methods hardly look into the
nature of motions and extract most important features by
empirical analysis or engineering methods [7, 8]. To solve
this problem, more attention should be paid to focus on the
physical nature of human motion characteristics and filter
key information for recognition. Ghasemzadeh and Jafari [8]
introduce a novel classification model that identifies physical
movements from body-worn inertial sensors while taking
collaborative nature and physical combinations of different
body joints into consideration. With physical information,
[8] maintains 93.3% classification accuracy.

To solve the second problem, probability and statistics
methods are introduced to overcome human motion’s uncer-
tainty. HMM [13] and Bayesian Network [7] are the most
widely considered algorithms to solve this problem. Bayesian
Network can cope with uncertainty, erroneous or missing
sensor measurements. Despite the fact that these classifiers
assume conditional independence of the features, the clas-
sifiers yield good accuracy when large amounts of sample
data are provided. The hidden Markov model (HMM) is
probably the most popular generative approach that includes
temporal information. An HMM is a probabilistic model
with a particular structure that makes it easy to learn from
data, to interpret the data once a model is learned, and is
both easy and efficient to implement. Bayesian Network and
HMMs form the basis of statistical temporal models; how-
ever, model for each certain activity should be modeled and
prior probability should be prepared before model is trained.
However, accurate probability is difficult to be obtained due
to the complexity and subjectivity of human motions, as well
as the requirement of large amounts of actual data. Motions
are performed under different environments simultaneously,
such as applications in medical care and emergency rescue
[1, 2, 14].

Data-driven methods may cover most applications but
they may be not suitable for some specific scenarios. As
Bousquet stated in [15], specific knowledge can help improve
generalization performance. Correspondingly, knowledge-
driven methods are more suitable for applications with
specific backgrounds, namely, direct human knowledge.
Knowledge-driven activity recognition is founded upon the
observations that most activities, in particular, take place
in a relatively specific circumstance of time, location, and
space. Knowledge-driven activity modeling and recognition
intend to make use of rich domain knowledge and heuristics
for activity modeling and pattern recognition [16]. The
rationale is to use various methods, in particular, knowl-
edge engineering methodologies and techniques, to acquire
domain knowledge. Comparing with data-driven activity
modeling that learns models from large-scale datasets and
recognizes activities through data intensive processing meth-
ods, knowledge-driven activity modeling avoids a number
of problems, including the requirement for large amounts
of observation data, the inflexibility that arises when each
activity model needs to be computationally learned, and the
lack of reusability that results when one person’s activity
model is different from another’s [16].

For particular applications, target motion set is generally
fixed and structured domain knowledge could be manually

obtained and utilized for better recognizing certain motions.
Motions or activities are completed in a certain sequence.
These rules could be obtained in advance, and we may
use these relations to help recognize the activity. In these
conditions, prior knowledge can enlighten the human activity
recognition on the basis of data-driven methods.

In this paper, we put forward a sequential recognition
method RT-PKDT (Recurrent Transformation Prior Knowl-
edge based Decision Tree) to recognize human motion
related activities, with consideration of a conceptual model.
By deeply mining commonly understanding motions, a con-
ceptual motion model is considered. Temporal information
is considered and a recurrent transformation method is put
forward to realize sequential human motion recognition.
With applying RT-PKDT into motion classification and the
integration of Support Vector Machine (SVM) using RBF
Kernel, it improves the classification performance and makes
up for the inadequacy of data itself. Result shows that our
proposedmethodworks better than traditionalmethods such
as SVM,BP, andBayesianNetwork andhas achieved a general
true classification rate of 96.68%.

2. Construction of PKDT

Prior knowledge plays a big role in the whole classification
process. To solve aforementioned problem, we try to bring
more expert knowledge into the classifier to achieve the goal
of extracting and using key features to improve classification
performance in the motion recognition process. In this
section, we present a new approach, prior knowledge based
decision tree (PKDT), by exploring rich domain knowledge
for activity classification rather than learning them from data
as seen in data-driven approaches.

As there may be lots of different activities in daily life
and we cannot take all into consideration, we turn to the
most frequently appearingmotion formedical care and emer-
gency rescue scenario including Standing, Lying, Walking,
Running, Walking upstairs, Walking downstairs, elevator up
(short for upstairs by elevator), and elevator down (short for
downstairs by elevator). The activity case set can be given by

Activity = {Standing (St), Lying (Ly), Walking (Wa),
Running (Ru), Upstairs (Up), Downstairs (Do),
ElevatorUp (Eu), ElevatorDown (Ed)}

(1)

2.1. Conceptual Motion Model. As for activity recognition
problems, prior knowledge is reflected in our understanding
of motions. It is commonly believed that a human motion
can be described from several attributes, like intensity,
orientation, velocity, and so on. These attributes, in some
aspects, embody characteristics ofmotions and can be related
to a series of key features that most eminently reflect the
physical difference among activities. These key features may
be used to group different kinds of activities into several
subclasses as they have various distribution overlap on the
same attribute. We thus make the most of the common sense
knowledge exploring the physical attributes of daily human
motions to construct a conceptual motion model, as shown
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Figure 1:The conceptualmotionmodel. Eachmotion can be viewed
as a combination of five attributes: intensity, orientation, velocity,
body-position, and duration.

in Figure 1. We model a human motion with attributes of
intensity, orientation, velocity, body-position, and duration.
Each attribute represents human motions in a side view
from a particular angle. Detailed explanation and analysis are
described as follows:

(i) Intensity: different motions behave differently in
the performance of exercise intensity. In everyday
life, activities, such as Walking, Running, Walking
upstairs, and Walking downstairs, consist of a series
of periodic mechanical actions, while activities, such
as Standing, Lying, ElevatorUp, and elevatordown, are
almost relatively static to surrounding environment.
Therefore, taking the difference of intensity attribute
between different activities, we can divide the activity
case set into two subclasses, the former Active activity
and the latterRest activity. Features, likemean value of
acceleration (MeanValueacc, shown in Figure 2(a)) are
to some extent related to activities’ intensity attribute.
Distinction between active and rest activities can be
easily made with the use of intensity related features.

(ii) Orientation: movements’ orientation is also one of
the most intuitive attributes in common knowl-
edge sense. As terrestrial reference coordinate sys-
tem is often thought of as the default coordi-
nate system, everyday activity can be classified
into two subclasses: (1) Vertical Motion, including{WalkingUpstairs, WalkingDownstairs, ElevatorUp,
ElevatorDown}, and (2) Horizonal Motion, including{Standing, Lying, Walking, Running}. The pressure
value got from barometer sensors directly reflects
the characteristics and differences between them.
Features extracted from pressure value, such as the
difference of pressure measurement value in a given
time window (Pressure𝑤, shown in Figure 2(b)) intu-
itively show how pressure, namely, height, changes
over time.

(iii) Velocity: velocity can clearly and effectively describe
how fast humans repeat the motion. Considering the
obvious differences among activities with different

motion velocity, we can group activities intoRelatively
High Velocity Motion and Relatively Low Velocity
Motion, taking Running and Walking as an example.
And it also works on WalkingUpstairs (or Walking-
Downstairs) versus ElevatorUp (or ElevatorDown).
Features like variance of the acceleration (𝜎2acc) and
mean crossing rate of acceleration and gyroscope
(MCRacc) reflect sensor data’s vibration with the going
of activity.

(iv) Body-position: human activities can be seen as a
combination of a series of body-part movements
instead of being performed by one single body-
part, which means distinction may arise from body-
position where sensors are mounted. In other words,
for certain activities, it may have similar distribution
of sensor data from one body-part, while clearly
difference will be seen when several body-parts’
data distribution is viewed together, which can be
made use of to do the distinction. For example,
Standing and Lying are two static activities while
sensors on single body-part are almost invariable. It
is very difficult to separate them from each other
with data from only one body-part. However, if data
from sensor mounted to Ankle and Shoulder are
combined, the pressure difference between these two
position (PressureDifferAS) will contribute greatly to
the distinction of the two activities.

(v) Duration: every activity lasts for a certain time, and
it is easy to be understood that a reasonable time
window is necessary to better distinguish activities.
If we certainly know how long a particular activity
lasts for, we could obtain more useful information
with the help of analyzing the whole activity process.
Previous researches are not unified on determination
of the time window length which is already discussed
in Section 2. In this study, we take an empirical
window length of 2 seconds, in order to avoid the
complexity of the problem and improve the classifier’s
generalization performance.

The above attributes constitute various activities. One
feature may work towards the classification process based on
one attribute but may not towards another. Purpose of the
study in this paper is to make the most of the differences
among activities’ attributes in order to tell them apart.There-
fore we explore the rich common knowledge extracting the
key features to construct a prior knowledge based decision
tree model with analyzing attributes’ distribution in methods
detailed in next section.

2.2. Prior Knowledge-Based Decision Tree. The proposed
conceptual model above establishes links between activities
and conceptual information through activity-based attributes
andmakes it possible to understand and distinguish different
motions in finer perspectives. At the same time, multiclass
classification could be done in steps one of which adopts
one attribute as a basis. In this way, hierarchical relationships
are constructed that link conceptual information with sensor
observations through activity attributes. Above-mentioned
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Figure 2: Boxplot of four features corresponded, respectively, to the attributes demonstrated inmotionmodel. Typical features corresponded,
respectively, to the attributes demonstrated in motion model and are calculated based on collected dataset. (a) is based on mean value
of acceleration; (b) is based on the difference of pressure measurement value in a given time window; (c) is based on the variance of the
acceleration; (d) is based on the pressure difference between Ankle and Shoulder.

considerations similarly make decision tree classifier a first
choice with the advantage of easier to build multilevel
heuristic structure as decision tree is a set of if-then rules
which are successively applied to the input data. Based on the
analysis of activity attributes, we propose a fusion method,
PriorKnowledge-basedDecisionTree (PKDT), to achieve the
goal of classification in a hierarchical way which at the same
time pursues a better generalization performance.

Making use of the characteristics of different attributes,
a typical heuristic decision tree based classification model is
demonstrated in Figure 3. In this binary tree structure, each
internal node is replaced with an activity attribute related
binary classifier, so as that a multiclassification problem
transforms into multiple binary classification problem which
can make the most use of balanced binary tree and internal
binary subclassifiers.

SupportVectorMachine (SVM) [17] is selected as internal
classifier and it may work out the confidence probability (CP)
of each candidate classes via decision values [17], denoted
as
→𝑑 . The class with the maximum probability is considered

to be the estimated result. For a SVM classifier intending to
classify 𝑁 classes, it may give out the decision value of each
classifier, which can be mapped to confidence probability by
activation function, namely,

CP = 𝑓(→𝑑) = 1
1 + exp (−→𝑑 + 1) . (2)

As demonstrated in Figure 3, our proposed PKDT has
3 layers which have 2𝑖 − 1 internal classifiers in the 𝑖th
layer. In the 𝑖th layer, the input instance are further classified
into 2𝑖 subclasses. The 𝑗th classifier in the 𝑖th layer, whose
discrimination function is 𝑔𝑖,𝑗(x𝑡 | 𝜃), gives out decision
values for internal classification results. Decision values
generated in the 𝑖th layer could be denoted as

→𝑑𝑖, while→𝑑𝑖 = [𝑑𝑖,1, . . . , 𝑑𝑖,𝑚], 𝑚 = 2𝑖. In bottom layer, final decision
values 𝑑𝑘 for the 𝑘th candidate motion are achieved via
multiplicative 𝑑𝑘 = ∏3𝑖=1𝑑𝑖,𝑘, 𝑘 = 1, . . . , 8. For a specific
instance 𝑥𝑡 at time 𝑡, confidence probability of the 𝑘th human
motion is CP𝑘 (mapped with 𝑓(𝑑𝑘)). The classification result
(𝑅𝑡) is represented with the maximumCP and worked out by
intermediate results 𝑑𝑘 as shown in

𝑅𝑡 = argmax (CP𝑘) , 𝑘 = 1, 2, . . . , 𝑁, (3)

where 𝑅𝑡 is the classification result with the maximum
confidence probability, ranging from 1 to 8 as there are 8
candidate human motions.

Based on the aforementioned fusion method, with the
advantages of hierarchical display, a balanced binary decision
tree is constructed in which each internal node is replaced
with an activity attribute-based binary subclassifier. It is
worth stressing that the five attributes of motion may make
no identical contribution on the activity classification so
that there could be a particular combination method of
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Figure 3: Prior Knowledge-based Decision Tree: A typical classification method according to commonly human sense.

these attributes used in PKDT. Among the five attributes
mentioned above, Duration is viewed as a fixed parameter in
this study. Intensity and Orientation are of certain indicators
that can separate one from the others, while Frequency and
Body-Position attribute have the nature of relativity which
makes them only suitable for local distinguish rather than
global distinguish. Taking another reason into consideration,
attributewith the largest classification performance should be
placed in the root classifier in order to get a better result along
with the latter classification process. By practical validation,
the demonstrated structure is the most effective one.

In PKDT method, a knowledge-driven recognition path
flows from the root node to leaf node, passing by activity
attribute related internal classifier. In this way, the overfitting
problem can be to some extent avoided. However, temporal
information is not yet considered and, in some conditions,
relationship between layers could be utilized for computa-
tional reduction.

3. Recurrent Transformation Model

A complex human motion typically consists of multiple
primitive events happening in parallel or sequentially over a
period of time. Understanding such complexmotion requires
recognizing not only each individual event but also, more
importantly, capturing their temporal dependencies. This is
in particular the case when the detection of individual events
is poor due to poor tracking results, occlusion, background
clutter, and so on. In this section, the transformation rela-
tionship between various human motions is studied and we

propose an hierarchical recurrent transformation model for
human motion recognition.

The model is constructed via two considerations: human
motion’s physical attributes and temporal transition depen-
dencies among human motions. Since the PKDT has already
considered physical information, in this section we mainly
introduce how temporal information could be included in the
motion classification process.

3.1. Temporal Transition Model. We now give a formal
description of an sequential transformation human motion.
Let Σ be a finite alphabet, each element𝑂 of which stands for
a singlemotion.We denote byΣ∗ the set of all possible strings
over Σ. An observation sequence of human activity is a finite
string from Σ∗ denoted by 𝑂 = 𝑜1𝑜2 ⋅ ⋅ ⋅ 𝑜𝑇. These temporal
transition constraints between different motions are acquired
by statistics in HMM and Bayesian Network methods [7, 13].

However, in practice these probabilities are hardly avail-
able because human motions are often stochastic and parox-
ysmal. With this taken into consideration, we take human
knowledge as constraints other than statistical probabilities.
In human common sense, there should be causal connections
between motions. For example, after Running there should
be a “Walking” for a period of time; then it may come
to “Standing” or perhaps “Running” again. However, it is
unreasonable that “Lying” immediately comes after “Run-
ning” (do not take falling into consideration, as there at
least is a conversion process). Without being very particular,
it may be unreasonable to suddenly change from “Lying”
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Table 1: Possible Transitions between time 𝑡 − 1 and time 𝑡. The first-order transition matrix is denoted as Trans1(𝑡 − 1, 𝑡).
Trans1(𝑡 − 1, 𝑡) St[𝑡 − 1] Ly[𝑡 − 1] Eu[𝑡 − 1] Ed[𝑡 − 1] Up[𝑡 − 1] Do[𝑡 − 1] Wa[𝑡 − 1] Ru[𝑡 − 1] Tu[𝑡 − 1]
St[𝑡] 1 0 1 1 0 0 1 0 1
Ly[𝑡] 0 1 0 0 0 0 0 0 1
Eu[𝑡] 1 0 1 0 0 0 1 0 0
Ed[𝑡] 1 0 0 1 0 0 1 0 0
Up[𝑡] 0 0 0 0 1 1 1 0 0
Do[𝑡] 0 0 0 0 1 1 1 0 0
Wa[𝑡] 1 0 1 1 1 1 1 1 0
Ru[𝑡] 0 0 0 0 0 0 1 1 0
Tu[𝑡] 1 1 0 0 0 0 0 0 1

to “Downstairs.” Figure 4 simply shows possible transition
relationship according to human sense, in which each arrow
represents possible transitions betweendaily humanmotions.

With these cognitive constrains, more accurate pattern
recognition could be realized and it will be shown in the
following studies. All these possibilities and impossibilities
could be inducted as shown in Figure 4, according to
human prior knowledge. Detailed transition relationship is
demonstrated in Table 1, where “1” stands for transferrable
and “0” stands for nontransferable.

CP is confidence probability of activity classification,
which could be achieved from SVM classifier [17]. Trans1(𝑡 −1, 𝑡) is the transition matrix which indicates the possible
transitions between time 𝑡−1 and time 𝑡.The expected output𝑅𝑡 is the classification result with the maximum confidence
probability. In consideration of last time recognition result𝑅𝑡−1, the constraints described in Table 1 are contained in
transitionmatrix Trans1(𝑡−1, 𝑡), and the supposed impossible
transition is limited to 0 as the confidence is set as 0. By this
means, a classification process is completed at certain time 𝑡.

Furthermore, apart from the transferability, the temporal
connection between motions should be also taken into
classification process. For facilitating the description, we
model the possible transferability between motions with the
constraints demonstrated in Table 1. Possible transitions are
judged by common prior knowledge and do not depend
on data acquisition and statistics in advance. It could be
viewed as a simplified Markov model in which transition
probabilities are set to “0” or “1.” For motion 𝑅𝑡 at a given
time 𝑡, its former motion state 𝑅𝑡−1 is considered. With
the truth Table 1, some unreasonable transitions are ruled
out, and possible transitions are shown in Figure 5. These
possible transitions are drawn by lines, while transition is
unreasonable to common sense where these is no line drawn
between states. Particularly, two red lines are drawn in
Figure 5, which means an intermediate state (“Standing” to
“Lying” or “Lying” to “Standing”) is separately considered as
the process is relatively long compared with other motions.

However, there may still exist some problems. In some
conditions, given a prior state 𝑅𝑡−1, the possible estimated
result of next state is constrained within a certain range.
Current humanmotion is clearly related to historicalmotions
within a time window. Methods mentioned above merge
human knowledge of possible transitions into classification

Walking

Elevator
up

Elevator
down

Upstairs Downstairs

Standing

Running

TurningSTL Lying

Figure 4: Conceptual transformation relationship between human
motions listed in activity.

process; however, temporal information is not being fully
exploited. More historical information can be added to the
classification process.

For the sake of this, a second-order transition model is
proposed as shown in Figure 5. Prior knowledge is considered
that for a certain time 𝑡; its current state is directly related
with both the last state and the next possible state, namely,
states at time 𝑡−1 and 𝑡+1. Possible second-order transitions
between human motions are described in Figure 5. Similarly,
a second-order transitionmatrix Trans(𝑡−1, 𝑡, 𝑡+1) could be
derived, which could be easily calculated if Trans1(𝑡 − 1, 𝑡) is
maintained well. Their relationship could be represented as

Trans (𝑡 − 1, 𝑡, 𝑡 + 1) = Trans1 (𝑡 − 1, 𝑡)
∗ Trans1 (𝑡, 𝑡 + 1) , (4)
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Figure 5: Second-order transition schematic diagram. The possible transferability between motions with the constraints is demonstrated.
(a) demonstrates the possible transitions among activities Standing, TurningSTL, and Lying. (b) demonstrates the possible transitions among
activitiesWalking andRunning. (c) demonstrates the possible transitions among activitiesWalking,Upstairs, andDownstairs. (d) demonstrates
the possible transitions among activities ElevatorUp, Elevatordown, Standing, andWalking.

where Trans1(𝑡 − 1, 𝑡) = Trans1(𝑡, 𝑡 + 1). Namely, the
second-order transition matrix is the square of first order
matrix. Unreasonable judgements are ruled out with second-
order transition matrix considered. It is worthy to mention
that the more temporal information considered, the better
recognition result could be got. But the conceptual model
would be rather complex as the second-ordermodel is already
complicated. So only second transitionmodel is adopted.The
recognition target could then be updated as

𝑅𝑡 = argmax {[CP1 CP2 ⋅ ⋅ ⋅ CP𝑁]∗ Trans (𝑡 − 1, 𝑡, 𝑡 + 1)} . (5)

3.2. Recurrent Prior Knowledge Based Decision Tree. With
sequential transition relationship being ruled as shown in
Figure 5, recognition could be realized with adding these
rules into PKDT method. Combined rules may correct
some misclassification results when transition information

is not taken into consideration. Then a recurrent transition
prior knowledge-based decision tree method (RT-PKDT) is
proposed.This hierarchical rules constrainedmethod utilizes
the temporal information between motions together with
hierarchical classification decision tree, the model of which
is shown in Figure 6.

RT-PKDT synthesizes the advantages of hierarchical clas-
sification and temporal transition method. It is human read-
able and combines the prior knowledge in the classification
process and at the same time takes human motion’s temporal
characteristics into consideration. As shown in Figure 6,
at certain time 𝑡, the classification process is proceeded by
PKDT method. The classification process could be divided
into the following three steps: at time 𝑡:

(1) Raw data is processed in the first place, extracting and
selecting features. Motion transition bounds demon-
strated in Figure 4 are considered. The integration
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Figure 6: RT-PKDT. At certain time 𝑡, the classification process is proceeded by PKDT method.

embodies in the use of result at time 𝑡 − 1 with first
order transition matrix 𝑇1. By this constraint, unrea-
sonable states are ruled out and further classification
is done by PKDT.

(2) With PKDT structure, confidence probability matrix
is worked out. The target motion with maximum CP
is selected as candidate result 𝑅𝑡.

(3) The same operation above is proceeded again at
time 𝑡 + 1 and result 𝑅𝑡+1 is achieved. Then, result
at time 𝑡 is updated with second-order transition
matrix, representing (5). Final classification result is
got which is represented as 𝑅∗𝑡 .

By the above process we can see that, in RPKDTmethod,
final result 𝑅∗𝑡 is bounded to the last time (time 𝑡 − 1) result𝑅𝑡−1 and the next time (time 𝑡 + 1) result 𝑅𝑡+1.
3.3. Feature Selection. In order to have more flexibility and
have a better description on the classification ability of
different features, we bring in a quantification mechanism,
with which the best combination of features needed by
each subclassifier is extracted. Detailed algorithm will be
demonstrated as follows.

3.3.1. FeatureQuantification. As analyzed above, a key feature
should have a less distribution overlap so we bring in the
conception of Divergence [9] to quantize class separability.
While the ratio 𝑃(x𝑡 | 𝐴 𝑖, 𝜃)/𝑃(x𝑡 | 𝐴𝑗, 𝜃) can reflect the
distinguishing capability of feature vector x𝑡 on activity 𝐴 𝑖
and 𝐴𝑗, divergence [9] can be denoted as

𝑑𝑖𝑗 = 𝐷𝑖𝑗 + 𝐷𝑗𝑖
= ∫+∞
−∞

(𝑃 (x𝑡 | 𝐴 𝑖, 𝜃) − 𝑃 (x𝑡 | 𝐴𝑗, 𝜃))
⋅ ln( 𝑃 (x𝑡 | 𝐴 𝑖, 𝜃)𝑃 (x𝑡 | 𝐴𝑗, 𝜃))𝑑x

𝑡

(6)

and one feature’s AverageDivergence is denoted as

𝑑 = 𝑁∑
𝑗=1

𝑁−1∑
𝑖=1&𝑖 ̸=𝑗

𝑃 (𝐴 𝑖) 𝑃 (𝐴𝑗) 𝑑𝑖𝑗, (7)

where 𝑃(𝐴 𝑖) and 𝑃(𝐴𝑗) stand for the probability of activities𝐴 𝑖 and 𝐴𝑗.
The bigger the feature’s AverageDivergence is, the greater

contribution to the separability of activities the feature has
made. As AverageDivergence directly reflects one feature’s
distinguishing capability and has a linear relationship with
classification accuracy, in this study, we take it as a standard
for filtering features.

3.3.2. Feature Selection. In this study, 50 features that are
widely used in related articles [2–7, 13, 15] are chosen for
candidate selection, like mean, variance, interquartile range,
signal magnitude area (SMA), and so on. However, the
number of features applied in one classifier is not the best.
Feature selection can be realized from two aspects: (1) remove
the useless features and (2) remove the related components.
In order to better explain this problem, we propose a
Divergence-based Feature Selection Algorithm (DFSA) on
the basis of floating search method [18]. DFSA is detailed as
follows.

Given a feature set that consists of 𝑁 features (𝑁 = 50
in this paper), we aim to find a feature subset with the best𝑘 (𝑘 = 1, 2, . . . , 𝑙 ≤ 𝑁) features resulting in the largest aver-
age divergence, namely, the best classification performance.
Denote𝑋𝑘 = {x1, x2, . . . , x𝑘} as the combination of the best 𝑘
features and the rest of𝑁−𝑘 features are denoted as𝑌𝑁−𝑘. We
reserve all best subsets of low dimension 𝑋2, 𝑋3, . . . , 𝑋𝑘−1,
respectively, corresponding to 2, 3, . . . , 𝑘 − 1 features. The
important functions 𝐷(∙) are defined to present a feature’s
importance. For features in𝑋𝑘,𝐷(∙) is denoted as

𝐷𝑘−1 (x𝑡) = 𝑑 (𝑋𝑘) − 𝑑 (𝑋𝑘 − x𝑡) , if x𝑡 ∈ 𝑋𝑘. (8)

For features not in𝑋𝑘,𝐷(∙) is denoted as

𝐷𝑘+1 (x𝑡) = 𝑑 (𝑋𝑘 + x𝑡) − 𝑑 (𝑋𝑘) , if x𝑡 ∉ 𝑋𝑘. (9)
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In selected features set 𝑋𝑘, the most important feature x𝑡 is
defined as the feature with the largest divergence contribu-
tion, subjecting to

𝐷𝑘−1 (x𝑡) = max
x𝑡∈𝑋𝑘

𝐷𝑘−1 (x𝑡) ; (10)

the least importance feature x𝑡 is defined as the feature with
the smallest divergence contribution, subjecting to

𝐷𝑘−1 (x𝑡) = min
x𝑡∈𝑋𝑘

𝐷𝑘−1 (x𝑡) . (11)

Similarly, in candidate features set𝑌−𝑋𝑘, themost important
feature x𝑡 is defined as the feature with the largest divergence
contribution, subjecting to

𝐷𝑘+1 (x𝑡) = max
x𝑡∈𝑌−𝑋𝑘

𝐷𝑘+1 (x𝑡) (12)

and the least importance feature x𝑡 is defined as the feature
with the smallest divergence contribution, subjecting to

𝐷𝑘+1 (x𝑡) = min
x𝑡∈𝑌−𝑋𝑘

𝐷𝑘+1 (x𝑡) . (13)

The core of this algorithm is in the next step, by borrowing
a feature from𝑌𝑚−𝑘 construct the (𝑘+1)th, key feature subset𝑋𝑘+1; then turn back to lower dimensional subsets to verify
whether average divergence has been improved while new
feature is added. If so, replace previously selected features
with new one. To obtain the best feature subset to maximize
the classification performance of each classifier, DFSA is
described as shown in Algorithm 1.

4. Experiments and Analysis

This section describes detailed experimental setting and
results that demonstrate the typical classification perfor-
mance of RT-PKDT.Detailed comparison betweenRT-PKDT
and several existing approaches (SVM, BP, and Bayesian
Network) has been carried on to verify the applicability of
RT-PKDT.

4.1. Experimental Setting. Our activity recognition platform
consists of five sensor unitsmounted to different parts of body
listed in Location case set to collectively detect transitional
movements listed in activity case set. Each sensor unit
has a 6-axis sensor (MPU6050, which integrates a triaxial
accelerometer and a triaxial gyroscope), and a barometer
sensor (MS5611). The five sensor units are connected to a
microcontroller (STM32F103) via cable wires for the sake of
sampling efficiency in a rate of 10Hz and data are recorded
to SD card in real-time. The whole system architecture is
demonstrated in Figure 7.

Experiments are conducted over the data set sampled
by the above platform at 10Hz. More than 30000 sam-
ples of each activity listed in activity set are taken and
a 10-fold cross validation is applied to ensure that the
sample set is large enough to guarantee the classification
accuracy and generalization performance. We use the pre-
sented platform for data collection and perform all pro-
cessing work offline in MATLAB with PC (Intel Core i5-
3210M CPU, 8G RAM). Our dataset is open sourced at
https://github.com/Ethan–Xu/PKDT-dataset.

Input: the set of𝑁 features to be selected𝑋 ={x1, x2, . . . , x𝑁}, the variable 𝑘 initialized as 0, and𝑋
initialized as 0.

Output: the set of final selected features𝑋𝑁
(1) x1 = argmaxy∈𝑌𝑁𝐷1(y) /∗ when 𝑘 = 0 ∗/
(2) 𝑋1 = {𝑋0, x1}
(3) x2 = argmaxy∈𝑌𝑁−1𝐷2(y) /∗ when 𝑘 = 1 ∗/
(4) 𝑋2 = {𝑋1, x2}
(5) for 𝑘 = 2 to𝑁 do
(6) /∗ searching forward in candidate features set ∗/
(7) x𝑘+1 = argmaxy∈𝑌𝑁−𝑘𝐷𝑘+1(y)
(8) 𝑋𝑘+1 = {𝑋𝑘, x𝑘+1}
(9) x𝑟 = argminy∈𝑋𝑘+1𝐷𝑘(y)
(10) if x𝑟 == x𝑘+1 then
(11) 𝑘 = 𝑘 + 1
(12) break
(13) end if
(14) 𝑋𝑘 = 𝑋𝑘+1 − {x𝑟}
(15) if 𝑘 == 2 then
(16) 𝑋𝑘 = 𝑋𝑘
(17) break
(18) end if/∗ searching backward in selected features set ∗/
(19) while TRUE do
(20) 𝑋𝑘 = 𝑋𝑘+1 − x𝑟
(21) x𝑠 = argminy∈𝑋

𝑘

𝑑(𝑋𝑘 − y)
(22) if 𝑑(𝑋𝑘 − {x𝑠}) < 𝑑(𝑋𝑘−1) then
(23) /∗ no more redundant features, update ∗/
(24) 𝑋𝑘 = 𝑋𝑘
(25) break
(26) end if
(27) /∗ roll back selected feature set ∗/
(28) 𝑋𝑘−1 = 𝑋𝑘 − {x𝑠}
(29) 𝑘 = 𝑘 − 1
(30) if 𝑘 == 2 then
(31) 𝑋𝑘 = 𝑋𝑘
(32) break
(33) end if
(34) if 𝑘 > 𝑁 then
(35) break
(36) end if
(37) end while
(38) end for

Algorithm 1: Divergence-based Feature Selection Algorithm.

Furthermore, a publicly available dataset [9] is adopted
for comparison to other approaches. In this dataset, a total
of 16 people, 6 females and 10 males, aged between 23
and 50 years, of different height, weight, and constitution
participated in the acquisition of the test data set. They
were all asked to follow a schedule of which activities to
perform and in which order, to allow us to cover all activities
(containing all activities in activity case). Test candidates were
asked to execute them in their personal style without a strict
choreography. They even were encouraged to perform the
same activities differently and to sometimes perform these
activities in such way that a human observer could just about
identify them accurately. Data were recorded in indoor and

https://github.com/Ethan–Xu/PKDT-dataset
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Table 2: Classification accuracy (%).

On collected data set On public data set [9]
SVM BP BayesianNet RT-PKDT SVM BP BayesianNet RT-PKDT

Standing 97.71 96.90 94.67 99.39 92.76 95.55 89.35 97.22
Lying 100 99.88 98.56 100 99.85 99.88 98.55 99.63
ElevatorUp 92.37 99.15 99.58 94.49 90.33 93.55 97.23 96.21
ClevatorDown 88.44 83.56 97.33 93.78 90.98 91.12 92.88 94.44
Upstairs 94.12 18.82 81.18 98.82 93.32 89.56 84.88 96.55
Downstairs 83.1 69.01 83.10 95.77 89.55 78.43 88.21 94.66
Walking 95.12 90.14 96.14 91.87 96.22 92.98 91.33 93.22
Running 99.16 48.74 100 100 98.84 82.35 98.32 99.35
Turning-St-Ly 84.00 58.67 84.00 96.00 88.76 75.35 86.35 90.05
Average accuracy 92.67 73.87 92.73 96.68 93.40 88.75 91.90 95.70

MCU SD card

SensorUnit

MPU6050

MS5611

Figure 7: Experimental Platform Settings. Each sensor unit is
mounted onto body locations tagged by red circles. MCU and
storage unit is located in place marked with blue box.

outdoor environment under seminaturalistic conditions.The
sensor was placed on the belt of the test candidate either on
the right or the left part of the body.

4.2. Results Analysis. To verify the validity of RT-PKDT on
HAR problem, we take Support Vector Machine, BP neural
work and Bayesian Network algorithms which are the most
widely used algorithms in the study of HAR to make a brute-
force comparison. We used the experimenter environment
in the WEKA toolkit, with or without transition taken into
consideration.

A radial basis kernel (RBF) based SVM is adopted using
LibSVM [17] with automatic parameter selection through
grid searching techniques. For the BP neural work, we take
the standard approach of recursively evaluating values for
the learning rate adopted in [12] and momentum using cross
validation. Method described in [7] is applied as a typical

Bayesian Network example. A 10-fold cross validation is
applied to each classifier independently and the experiment
results are shown in Table 2. From Table 2 we can see that
the four algorithms show different classification accuracy on
both data sets.

According to the performance, on collected data set, they
can be sorted in the following order: RT-PKDT>Bayesian-
Network>SVM>BP. Furthermore, RT-PKDT shows the high-
est global average classification accuracy reflecting a high sta-
bility during the classification. Similar performance are also
presented on public data set [9]. In each independent activity,
RT-PKDT also presents a better performance in classification
accuracy and stability. SVM and Bayesian Network present
similar effectiveness but they both show badly consistency
on the recognition accuracy of different motions. For some
specific human motion, the accuracy is rather low. They did
not perform well as some of the testing activities may have
similar feature distribution leading to fuzzy boundaries in
the classification process. It may be because the training
of multilayer perceptron is relatively complicated in this
recognition problem and leads to overfitting. Besides, the
long-time consumption in training phase of BPmakes it unfit
for real-time application.

For better comparison, Table 3 demonstrates the exper-
iment results of several related works, using the methods of
decision tree, 𝑘-NN, neural networks, and SVM. In contrast
with self-designed algorithms used in Table 2, better results
have been reachedwith improved ones in these relatedworks,
and particularly in [8] accuracy has been as high as 93.3%.
However, our proposed RT-PKDT method still stands out
with a highest accuracy 96.68%. Besides, RT-PKDT makes
the advantage of motions’ physical attributes which makes
it more readable and easy to be understood and at the same
time improves the classification performance with temporal
information taken into consideration.

4.3. Comparison with Deep Learning Method. Apart from
the methods mentioned above, deep learning is a hotspot of
current research. Deep learning refers broadly to a branch of
machine learning based on a set of algorithms that attempt
to model high-level abstractions in data by using a deep
graph with multiple processing layers, composed of multiple
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Table 3: Comparisons with methods in other literatures.

Method Candidate motions Sensors type Sensors location Accuracy
Decision tree [8] 25 actions, Stand-Sit, Sit-Lie, etc. Accelerometer, gyroscope 9, wrist, arm, ankle, etc. 93.3%
K-NN [10] 25 actions, Stand-Sit, Sit-Lie, etc. Accelerometer, gyroscope 8, waist, left-forearm, etc. 92.2%
Neural Networks [11] 12 actions, Standing, Lying, etc. Accelerometer 5, left forearm, trunk, etc. 89.2%

SVM [12] 8 actions, running, upstairs, etc. Accelerometer, gyroscope,
Magnetometer, barometer sensor 1, hand 88.6%

Bayesian Network [7] 7 actions, running, walking, etc. Accelerometer, gyroscope,
Magnetometer 1, belt 90%

proposed RT-PKDT 8 actions, listed in Activity Accelerometer, gyroscope,
barometer sensor 5 body-positions, listed in Location 96.68%

linear and nonlinear transformations. Deep learning tech-
niques have outperformed many conventional methods in
computer vision and audio classification. On human motion
recognition issue, some related research has been done. For
example, Ordóñez and Roggen [19] proposed a generic deep
framework (DeepConvLSTM) for activity recognition based
on convolutional and LSTM recurrent units. LSTM can also
make use of temporal information which is stressed through
this article. The DeepConvLSTM is evaluated on two public
activity recognition datasets and the accuracy is around 90%.

However, problems exist that deep learning method has
a strong dependency on data size. Human motion related
activity recognition can seldom meet the needs of this large
amount of data. Contrast experiment is conducted on the
data collected in this paper by DeepConvLSTM method. An
accuracy of only 22% is achieved, comparing with 96.68% of
RT-PKDT. Results show that deep learningmethod is not that
fit to human motion recognition problem due to its data size
dependency.

5. Conclusion

The major contribution of this work is the proposal of
a knowledge-driven method to recognize motion related
human activities. In this study, we construct a conceptual
model of motion related activities with exploring common
domain knowledge with taken temporal information into
consideration. RT-PKDT can be viewed as a recognition
method with knowledge applied into the dealing of data
which at the same time covers the advantages of data-driven
methods. With a set of hierarchical rules successively applied
to the recognition process, RT-PKDT shows a better recog-
nition accuracy (96.68% on average). Compared with other
algorithms, our proposed HPKDT method has the highest
classification accuracy as well as a rather high efficiency. The
efficiency of RT-PKDT is contributed by the following three
factors. The first factor to promote classification accuracy
is the deep analysis of different activities’ attributes which
concentrated features can far more embody the differences.
The second factor to improve performance is making the
most of temporal dependencies of humanmotions. Besides, a
feedback method is adopted via fixing the estimated result at
time 𝑡 with result at time 𝑡 + 1. The recurrent transition rela-
tionship amongmotions uses the temporal information to the
max extent. RT-PKDT enhances classification performance

with introducing knowledge into classifier and bringing in
a set of hierarchical rules which are successively applied to
the input data. All above reasons contribute to RT-PKDT’s
outstanding performance.
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