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a b s t r a c t 

Human motion sensing based on wearable sensors could be viewed as a multi-objects tracking issue of 

human body joints. Sensor drift errors and distortion are the main challenges of the tracking accuracy of 

human motion. Traditional filtering and fusion methods, such as Kalman filter, can to some extent reduce 

the instantaneous error but cannot avoid sensor drift fundamentally. Physical characteristics of human 

body should be considered and human motion models should be exhibited to describe human motions. 

The existing models such as skeleton model and cylinder model are either too simple or too complicated 

for practical applications. In this study, we put forward a geometrical kinematic characteristics based hu- 

man motion model. The whole human body is viewed as an articulated skeleton and Denavit–Hartenberg 

convention is adopted to describe the forward kinematics structure. Theoretical analysis is conducted 

with the derivation of Posterior Cramer–Rao Lower Bound (PCRLB) in human movement scenes based on 

proposed model. Significant superiority is shown in simulation results. An experiment on human lower 

limb motions is carried out to verify the validity of the proposed human motion model in practice appli- 

cations, from the angles of both capturing accuracy and energy consumption. The capturing accuracy has 

an obvious increase in the testing results, with acceptable energy consumption. It is far more efficient 

than traditional methods. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

With the booming of body sensor networks (BSNs), people-

entric motion sensing applications have been developing very fast.

ue to the advantages of low cost and small size, wearable sen-

ors have been drawing attention. They can meet most needs of

uman motion monitoring and have been adopted in many appli-

ations, such as interactive gaming and learning, animation, health

are, personal navigation and security monitoring [1–9] . 

As BSN systems can be directly used to monitor several vital

igns continuously and noninvasively, with sensors placed on body

arts, they are widely used in e-Health applications [2–4] . These

ignals can be captured by multiple sensors, and in turn, infer

any diseases at an early stage. Sameer et al. [4] defined a frame-

ork that managed common tasks for healthcare monitoring appli-

ations to aid development of BSN. Chen et al. [5] proposed body
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emperature sensor that was wearable, breathable and stretchable

or healthcare monitoring. They are capable of measuring tempera-

ure, pressure and strain so far. Bebek et al. [6] and Bamberg et al.

7] utilized a pressure sensor array and inertial measurement unit

IMU) for gait analysis. Ghasemzadeh et al. [8] introduced a novel

lassification model that identified physical movements from body-

orn inertial sensors while taking collaborative nature and limited

esources of the system into consideration. Inertial sensors are in-

egrated with ultrawideband (UWB) localization system in [9] for

imultaneous 3-D trajectory tracking and lower body motion cap-

ure (MoCap) under various dynamic activities such as walking

nd jumping. This method obtained accurate results but also in-

roduced additional complexity. 

Despite the advantages mentioned above, there still exist chal-

enges when wearable sensors are applied to human motion sens-

ng. As human motion sensing could be viewed as a multiple tar-

ets localization issue of human body joints, tracking accuracy is

he most important consideration. However, sensor drift errors and

istortion (especially in long time monitoring) are the main prob-

ems. 

http://dx.doi.org/10.1016/j.inffus.2017.09.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2017.09.014&domain=pdf
mailto:hejie@ustb.edu.cn
mailto:zxt@ustb.edu.cn
http://dx.doi.org/10.1016/j.inffus.2017.09.014
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Kalman filter and calibration algorithms are the most widely

adopted method to overcome drift errors. They are both used to

overcome the instantaneous error problem and multiple sensor

fusion problem. Luinge et al. [10] realized a method to measure

the orientation of human body segments using Kalman filter that

took into account the spectra of the signals, as well as a fluctu-

ating gyroscope offset, and thereby improved the estimation ac-

curacy. However, the reduction of instantaneous errors delayed

the accumulation but cannot avoid the sensor drift fundamentally.

Since human motion sensing could be viewed as multiple targets

tracking issue, fusion methods [11–13] are studied to fuse multi-

ple channel information. However, these studies to some degree

improve the recognition accuracy in the angle of intelligent algo-

rithms, but cannot meet the drawbacks of data source. Errors still

accumulate as time goes on [11] . 

To better solve these problems, expedient models should be

exhibited to describe human motions. Both filter and intelligent

recognition algorithms rely on system models [10] . The expecting

models should fulfill the following requirements: 

• The description method of the motion model should be adapt-

able to different persons, namely with good generalization ca-

pability. 

• It’s possible to incorporate prior known constraints to narrow

down the search space of algorithms and improve the capturing

accuracy. 

• The entire human body should be viewed as a whole and the

correlation connected body relationship should be considered. 

Based on above considerations, skeleton model is widely

adopted in human motion monitoring studies and applications,

especially in computer vision area [1,10] . The human body can

be modeled as an articulated structure with 15–19 limbs [14,15] ,

and the overall posture of the human subject can be accurately

acquired by determining the orientation of each limb. However,

in these studies, motion recognition systems rely on fine-grained

tracking on exactly human joints using cameras [1] and iner-

tial sensors [10] . Tracking is always conducted solely on human

joints or body parts. Commercial systems like Xsens [16] and In-

terSense [17] employ similar approaches in commercial applica-

tions with monitoring each sole joint’s movements using inertial

and magnetic sensors or ultrasonic sensors. Cylinder model is an-

other common adopted human motion model, quoted in literatures

[18] and [19] . Each body part is represented with a degenerated

cylinder and the joints are described with various degrees of free-

doms(DoFs). The overall body model is built in a tree-like hierarchy

starting with the torso as root body part. Each child is described

with a degenerated cylinder and the corresponding transformation

from its parent. Joint model is also introduced in [20] and ICP-

based approach is applied for pose estimation. However, it seems

that the effect of the algorithm is partially removed when the con-

straints are enforced. In addition, the multiple DoFs information

could hardly be obtained in practical applications. 

Considering the above problems, since skeleton model takes

body joints solely and cylinder model do not work well when con-

straints are applied, improvements should be developed. The pro-

posal of a structured human motion model is urgent, consider-

ing both geometrical characteristics and the integrality of human

body. A kinematics-based model is a better choice. Correspond-

ingly, body connections are considered in [21,22] . Mihelj et al.

[21] considered a technique for computation of the inverse kine-

matic model of the human arm. The algorithm enables estima-

tion of human arm posture, but the drift errors are never consid-

ered. Vlasic et al. [22] presented a system for acquiring motions

with wearable sensors gathering ultrasonic time-of-flight and in-

ertial measurements. The information is combined using an Ex-

tended Kalman Filter to reconstruct joint configurations of a body.
owever, the ultrasonic sensors frequently suffer from serious sig-

al interference. 

With the requirements for motion sensing in mind, we take

he advantages of both skeleton and cylinder models, as well as

onsidering kinematic characteristics of human body. In this study,

e propose a geometrical characteristics based articulated human

odel, considering the co-movements of various parts of the body.

he main contribution of this paper is using the geometrical con-

trained method (GC method) and the connectivity between joints

o improve human motion monitoring accuracy. The basic idea is

o use Denavit–Hartenberg Convention forward kinematics to re-

onstruct human body and revise the estimation error and distor-

ion. D-H transformation makes use of the relative and absolute

ositions between joints and limbs and these linkage constraints

o some extent limit the drift errors of sensors. 

The rest of this paper is organized as follows. In Section 2 , we

nalyzed human motions kinematic characteristics, and proposed

he geometrical model, as well as its representation. In Section 3 ,

CRLB simulation is presented, and verify the theoretical perfor-

ance of proposed model. Field experiment and results analysis

re given in Section 4 for human lower limb analysis and personal

avigation. Finally, conclusion comes in Section 5 . 

. Modeling of human motions 

As mentioned above, the whole human body is an assembly

f body parts connected to manage forces and movements. Each

otion is accomplished collaboratively rather than independently.

he movement of a body is studied using geometry so the limb is

onsidered to be rigid. The connections between limbs are called

oints. A linkage modeled as a network of rigid limbs and ideal

oints is called a kinematic chain. In order to understand better the

uman motion, in this chapter, we take a deep analysis on geomet-

ical characteristics of human body. We model the human body as

 combination of joints and limbs, and the coordinate description

ethod is proposed. With the proposed kinematic model, geomet-

ical information is merged into consideration and the human body

s more easily to be viewed as a whole. 

.1. Geometrical kinematic body description 

Generally, a 3D human motion is considered as a series of con-

inuous movements of joints and limbs. These motions are math-

matically presented by coordinates and orientations of sequen-

ial body parts. The whole body could be regarded as an artic-

lated chain structure composed of several rigid segments(limbs)

nd joints [24,25] . This kind of chain structure makes the move-

ent of each part of the body not independently but coopera-

ively. The articulated human body has a large number of kine-

atic joints, but a particular motion may only involve a small sub-

et of them. The possible related body parts could be represented

s a linear combination of the joints. Therefore, in order to clearly

escribe human motions, we group the estimated body into five

arts (left-arm, right-arm, trunk, left-leg, right-leg) and signify hu-

an bodies with dots and lines. The five parts together contribute

o a pyramid-like whole body. Detailed description is shown in

ig. 1 . 

The rigid body skeleton is modeled as a tree structure, consist-

ng of five connected parts. Each part is generally consist of three

oints and two limbs. Then we define a set of joints and lines on

he human skeleton. There are 15 joints and 14 limbs. 

Joints. Each joint J is encoded with its coordinate( x J , y J , z J ). 

Limbs. These lines L J 1 → J 2 
refer to virtual space position between

joints J 1 and J 2 . One of these two constraints should be sat-

isfied: 
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Fig. 1. Kinematic articulated human skeleton model. A complete human body is 

described from three levels: 1) Joints. 2) Limbs and trunk. 3) Whole body. 
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Fig. 2. Human motion coordinate system. Take Arm as an example. Local motion 

parameters are mainly join coordinates, angles and relative distance. 
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1) J 1 and J 2 are directly adjacent in the kinetic chain. These

limbs are clearly drawn in Fig. 1 with black solid line. 

2) One of J 1 and J 2 is two or more steps away on the

same kinetic chain (i.e., L LShoulder → LWrist and L RHip → RAnkle ).

These lines significantly reflect the relative relationship

between indirect connected joints. 

In the description above, we mainly expound how human body

ould be represented with basic elements, namely joints and limbs.

 linkage structure is constructed and every human motion could

e represented as a cooperative movement of connected joints and

imbs. The movement of an ideal joint is generally associated with

 subgroup of Euclidean displacements. Two or more rigid bodies

n space are collectively called a rigid body system. Among nu-

erous complex motions, arms and legs are the most important

articipants and they conduct lots of actions. For example, legs(or

ower limb) play a big role in motions of walking, jogging, run-

ing and jumping, whereas arms(or upper limb) matter more in

otions of swing hands and lifting. Moreover, motions like climb-

ng up and down are in need of the participation of both lower

nd upper limbs. However, in majority the trunk remains relatively

teady in compare to the end joints or limbs of the human body. 

This phenomenon is quite similar with the end-effect problem

29] in robotics area. The action of humanoid robots is usually re-

onstructed based on kinematic constraints and the forward kine-

atic method. Similarly, on the issue of human motion sensing,

e can describe the motion of these independent rigid bodies with

inematic constraints. Kinematic constraints are relations between

igid bodies, namely the geometrical coordinates ( x J , y J , z J ) and dis-

ance constraints L J 1 → J 2 
. The Denavit–Hartenberg convention pa-

ameters (also called D–H parameters) are introduced to describe

inematic human motion. It is widely used in humanoid robot-

otion reconstruction and articulated mechanical motion monitor-

ng. In the following part of this section, the detail definition of

oordinate system and D–H parameters will be demonstrated. 

.2. Coordinate system definition 

A local coordinate system is the most important description

omponent as it meticulously describes the details of human ac-

ions. Under the local system, in order to show the relative position

etween each joint, on the basis of our proposed segmented skele-

on model, the spine (chest) is selected as the origin of the whole
ocal system. As the segmented skeleton has a layered structure,

his origin is equivalently the root node of a tree. Meanwhile, since

he movement of each joint has its independence, independent

ub-coordinate system originating as each joint can be constructed

n direction of its movement. At the same time, because the vari-

us joints are linked together by bones, their respective movement

annot be totally separated but have certain associations. This con-

orms to the mechanical system of connecting rod movement, us-

ng Denavit–Hartenberg dynamics equation. Since then, we have

tarted from a kinetic analysis and model human motions with

athematical representations. 

In the following part of this chapter, we will demonstrate how

ocal coordinate system is constructed and what parameters from

his system we could obtain to describe human motions. 

.2.1. Coordinate system construction 

Fig. 2 is shown as an example. Local coordinate system should

e constructed following these principles: 

1. Number the joints from 1 to n starting with the base and end-

ing with the end-effector. 

2. Establish the base coordinate system. Establish a right-handed

orthonormal coordinate system ( X 0 , Y 0 , Z 0 ) at the supporting

base with Z 0 axis lying along the axis of motion of joint 1. 

3. Establish joint axis. Align the Z i with the axis of motion (rotary

or sliding) of joint i + 1 . 

4. Establish the origin of the i th coordinate system. Locate the

origin of the i th coordinate at the intersection of the Z i & Z i −1 

or at the intersection of common normal between the Z i & Z i −1 

axes and the Z i axis. 

5. Establish X i axis. The X i axis lies along the common normal

from the Z i −1 axis to the Z i axis, X i = ±(Z i −1 ×Z i ) / ‖ Z i −1 ×Z i ‖ ) ,
(if Z i −1 is parallel to Z i , then X i is specified arbitrarily, subject

only to X i being perpendicular to Z i ); 

6. Establish Y i axis. Assign Y i = +(Z i × X i ) / ‖ Z i × X i ‖ ) to complete

the right-handed coordinate system. 

7. The hand coordinate frame is specified by the geometry of the

end-effector. Normally, establish Z n along the direction of Z n −1 

axis and pointing away from the robot; establish X n such that it

is normal to both Z n −1 and Z n axes. Assign Y n to complete the

right-handed coordinate system. 

Local coordinate system could be constructed based upon above

rocedures. Then motion parameters generated in this system is

escribed as follows. 
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2.2.2. Parameters definition 

The following four transformation parameters are used to Limb

and Joint motions, which are known as Denavit–Hartenberg(D–H)

parameters [26] : 

1. Joint angle θ i : the angle of rotation from the X i −1 axis to the

X i axis about the Z i −1 axis. It is the joint variable if joint i is

rotary. 

2. Joint distance d i : the distance from the origin of the (i − 1) co-

ordinate system to the intersection of the Z i −1 axis and the X i 

axis along the Z i −1 axis. It is the joint variable if joint i is pris-

matic. 

3. Limb length a i : the distance from the intersection of the Z i −1 

axis and the X i axis to the origin of the i th coordinate system

along the X i axis. 

4. Limb twist angle αi : the angle of rotation from the Z i −1 axis to

the Z i axis about the X i axis. 

With these parameters, human body parts are possible to be

viewed as a geometrical connected whole. Comovement relation

between joints and limbs is covered and constrained because rel-

ative information is taken into consideration. How these effects

work will be detailed in the next chapter. 

Once the process model and measurement model are deter-

mined, the rest of the problem is to consider how to obtain the

four D–H parameters. The parameters, θ and α, are easily obtained

with the fusion of IMU sensors, namely accelerometer and gyro-

scope [8] . The parameters, d and a , can be achieved with TOA(time

of flight) ranging method. Ultra-wide Bandwidth(UWB) is widely

used in high accuracy distance measuring applications [9] . In the

following study, IMU sensors and UWB ranging nodes are fused to

capture the D-H parameters needed by proposed motion model. 

2.3. Geometrical kinematic model 

Based on above discussion, let m k = [ P, n ] T = [ X P k , 
Y P k , 

Z P k , 
X n k ,

 n k , 
Z n k ] 

T , (k = 1 , . . . , K) be the state vector at the k th state, where

( X P k , 
Y P k , 

Z P k ) is the 3D location coordinate of the joint in world

coordinate space and ( X n k , 
Y n k , 

Z n k ) is the norm vector indicating

direction of joint movement, for short of matrix R. K is the total

number of observation frames. We define ˆ m k , as the predicted po-

sition of the joint from sensor based joint tracking and define ˆ z k 
as the measured position from RF ranging based localization. Thus,

the system state transition function can be given as {
ˆ P k +1 = A k ˆ m k + q k 
z k +1 = H k ˆ m k + r k 

(1)

where q k is the inaccuracy of movement estimation that follows

Gaussian distribution with covariance Q and r k is the inaccuracy

of RF based location estimation that follows Gaussian distribution

with covariance R . The matrix A k and matrix H k can be given as 

A k = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 

ˆ d k 0 0 

0 1 0 0 

ˆ d k 0 

0 0 1 0 0 

ˆ d k 
0 0 0 

0 0 0 [ R ] 
0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

T 

H k = 

[ 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

] T 

where R = RR k R 
−1 is the accumulative rotation matrix and R k is the

standard rotation matrix that contains yaw–pitch–roll information.

With the use of parameters in defined coordinate systems, rela-

tive positions of different human motions can be represented. The
enoted information consists of two parts, the Rotation vector R
nd the Position vector P , namely 

 

n 
0 = M 

1 
0 M 

2 
1 M 

n 
n −1 = 

[
R 

n 
0 P n 0 

0 1 

]
(2)

here rotation vector is defined as a 3 ∗3 matrix, R =

n o a 

]
= 

[ 

n x o x a x 
n y o y a z 
n z o z a z 

] 

. Position vector P directs to

he heart of local coordinate system from the origin of reference

ystem, namely P = 

[
p x p y p z 

]
T . 

Since we defined joint parameters such as Joint angle θ i and

oint distance d i , time-variant characteristics of human motions

hould be represented by these data. Four successive elementary

ransformations are required to relate the i th coordinate frame to

he ( i −1)th coordinate frame: 

1. Rotate about the Z i −1 axis an angle of θ i to align the X i −1 axis

with the X i axis, namely R (z i −1 ,θi 
) . 

2. Translate along the Z i −1 axis a distance of d i , to bring X i −1 and

X i axes into coincidence, namely T (z i −1 , d i ) . 

3. Translate along the X i axis a distance of a i to bring the two ori-

gins O i −1 and O i as well as the X axis into coincidence, namely

R ( x i , αi ). 

4. Rotate about the X i axis an angle of αi (in the right-handed

sense), to bring the two coordinates into coincidence, namely

T ( x i , a i ). 

The rotation matrix between joint i and joint i − 1 can be writ-

en as: 

M 

i 
i −1 = 

[
R 

i 
i −1 

P i 
i −1 

0 1 

]
= R (z i −1 , θi ) T (z i −1 , d i ) R (x i , αi ) T (x i , a i ) 

= 

⎡ 

⎢ ⎣ 

cos θi −cos αi sin θi sin αi sin θi a i cos θi 

sin θi cos αi cos θi −sin αi cos θi a i sin θi 

0 sin αi cos αi d i 
0 0 0 1 

⎤ 

⎥ ⎦ 

(3)

We denote a 3D position vector to represent human motion

s P = 

[
X Y Z 

]T 
. Furthermore, as mentioned before, a time-

omain motion could be viewed as a series of transformation from

 moment before. As the position transformation from joint k − 1

o joint k may be written as 

 k = P k k −1 + R 

k 
k −1 P k −1 (4)

ased on former definition, position at joint k could be further rep-

esented as 
 

X P k 
Y P k 
Z P k 

] 

= 

⎡ 

⎣ 

X P k 
k −1 

Y P k 
k −1 

Z P k 
k −1 

⎤ 

⎦ + 

[ 

n x o x a x 
n y o y a z 
n z o z a z 

] [ 

X P k −1 
Y P k −1 
Z P k −1 

] 

(5)

amely, it could be viewed as the result of Translation and Ro-

ation from the position at joint k − 1 . To simplify the set up, its

efined as ⎡ 

⎢ ⎣ 

X P k 
Y P k 
Z P k 
1 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

n x o x a x 
X P k 

k −1 

n y o y a z 
Y P k 

k −1 

n z o z a z 
Z P k −1 

0 0 0 1 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

X P k −1 
Y P k −1 
Z P k −1 

1 

⎤ 

⎥ ⎦ 

= M 

k 
k −1 

⎡ 

⎢ ⎣ 

X P k −1 
Y P k −1 
Z P k −1 

1 

⎤ 

⎥ ⎦ 

(6)

urther simplification is possible. The position at joint k could be



C. Xu et al. / Information Fusion 41 (2018) 243–254 247 

a  

T  

fi⎡
⎢⎣

m  

a  

b  

b  

t  

A

I

O

t  

t

3

 

e  

t  

I  

C  

u  

t  

c  

H  

(  

a  

d  

t  

t  

t  

f

 

c  

o  

t  

g  

fi  

f  

T

3

 

t  

n  

a

P  

w  

d

w  

I

d

w  

s

N  

u  

σ
 

p

θ  

w  

m  

p  

θ
 

r

α  

w  

m  

p  

d

3

 

t  

t  

l  

s  

t  

P

 

f

f  

E  

w  

t  

m

F  

 

 

[  

P

 series of transformation from the original joint numbered 0 after

ranslation and Rotation. So a structured human motion could be

nally modelled as 
 

 

 

X P k 
Y P k 
Z P k 
1 

⎤ 

⎥ ⎦ 

= M 

k 
0 

⎡ 

⎢ ⎣ 

0 

0 

0 

1 

⎤ 

⎥ ⎦ 

(7) 

If we define the priori estimate error covariance as ˆ E = E[(P k −
ˆ  k )(P k − ˆ m k ) 

T ] and define the posteriori estimate error covari-

nce as E = E[(P k − m k )(P k − m k ) 
T ] , a classic Kalman filter [27] can

e exploited to hybrid the information from both sensor sensing

ased and RF based localization. The mathematical description of

he hybrid motion tracking approach is shown in Algorithm 1 and

lgorithm 1 Kalman filtering for D–H based motion tracking. 

nput: : Initialized ˆ z 1 and P 1 , ˆ m 1 = ˆ z 1 . 

utput: : Expected ˆ m K . 

1: for k = 2 to K do 

2: Predict the state, ˆ m k = A ̂  m k 

3: Predict state error covariance, ˆ E k = A E k −1 A 

T + Q

4: Update the rotation matrix, R = RR k R 
−1 

5: Compute Kalman gain, K k = 

ˆ E k H 

T (H ̂

 E k H 

T + M) −1 

6: Update the state, ˆ m k = ˆ m k + K k (z k − H ˆ m k ) 

7: Update state error covariance, E k = (I − K k H) E 
8: end for 

he performance of the hybrid approach will be discussed later in

he next Section. 

. PCRLB simulation 

The motion capture accuracy is the most important metric to

valuate the proposed model’s performance. Human motion moni-

oring is a kind of tracking on the human body joints and limbs.

t is reasonable to view it as a localization problem. Posterior

ramer–Rao Lower Bound (PCRLB) [33] is one of the most widely

sed criteria to evaluate models and algorithms [23,28] . It offers

he minimum limit estimation error of all unbiased estimators and

an perfectly show the performance of models and algorithms.

owever, to the best of our knowledge, in body sensor network

BSN) areas, no related studies have been done on the theoretical

nalysis of the error bounds of motion capture, especially when

istance and inertial measurement are both taken into considera-

ion. In this section, we first analyze the errors in motion capture,

hen derive the PCRLB of proposed human motion model. Simula-

ions of performance comparison are performed to verify the ef-

ectiveness of this model. 

For the sake of convenience , in the following derivation pro-

ess, three 3D space parameters are introduced in representation

f the four D–H convention parameters. The parameters, respec-

ively, are distance measurement d , azimuth angle θ and pitch an-

le α. The definition of these parameters is shown in Fig. 3 . we de-

ne ∇ a � [ ∂ 
∂a 1 

, . . . , ∂ 
∂a M 

] T , ∇ 

b 
a � ∇ b ∇ 

T 
a . p ( a ) the probability density

unction (p.d.f.) of the random vector a , � the Kronecker product,

r { · } the matrix trace. 

.1. Error definition 

Human motion capture is the monitoring of various joints along

he time sequence. The tracking position of joint at time k is de-

oted as P k . In time line, the tracking of joint k could be described

s 

 k +1 = P k + d k T k + s k (8)
here s k is additive Gaussian noise with the mean μ0 and stan-

ard deviation σ 0 , namely s k ∼ N (μ0 , σ
2 
0 ) . 

The coefficient vector T k is T k = [ sin αk cos θk , sin αk sin θk , sin φk ] 
T 

here the azimuth θk −1 and the pitch φk −1 can be calculated by

MU sensors using gyroscopes and magnetometers. 

ˆ 
 k = d k + n k (9) 

here d k is the actual Euclidean distance. The distance mea-

urement noise comply with Gaussian distribution, namely n k ∼
 (μd , σ

2 
d 
) . n k is the measurement noises that can be modeled as

ncorrelated zero-mean Gaussian random variable with variances
2 
d 

. Vector ˆ d = [ ̂  d 0 , ˆ d 1 , . . . , ˆ d k −2 ] 
T is introduced to collect ˆ d k . 

Horizontal heading estimates from inertial sensor based ap-

roach reads 

ˆ 
k = θk + u k , u k ∼ N(0 , ε2 

k ) (10)

here θ k is the actual horizontal heading. u k is uncorrelated zero-

ean Gaussian random variable with variances ε2 
k 
, which is inde-

endent from z direction and is also uncorrelated with 

ˆ d . Vector
ˆ 
k [ ̂

 θ0 , 
ˆ θ1 , . . . , 

ˆ θk −2 ] 
T is introduced to collect ˆ θk . 

Vertical elevation estimates from inertial sensor based approach

eads 

ˆ k = αk + v k , v k ∼ N(0 , ξ 2 
k ) (11)

here αk is the actual vertical elevation. v k is uncorrelated zero-

ean Gaussian random variable with variances ξ 2 
k 
, which is inde-

endent from z direction and is also uncorrelated with both 

ˆ θ and
ˆ 
 . Vector ˆ αk [ ̂  α0 , ˆ α1 , . . . , ˆ αk −2 ] 

T is introduced to collect ˆ αk . 

.2. Posterior Cramer–Rao lower bound 

As is mentioned at the beginning of this section, regarding

he time-variant statistical system models for hybrid motion cap-

uring, CRLB is most frequently used to provide the performance

ower bound. With posterior information of random parameters

uch as step length, heading and elevation, CRLB can be extended

o PCRLB. In this section, we introduce the mathematical basis for

CRLB calculation. 

The best place to start PCRLB derivation is the joint p.d.f. as

ollows: 

p( ̂ r , ˆ d , ˆ θ, ̂  α, ˆ P ) = p( ̂ r 0 | P 0 ) 
K−2 ∏ 

k =0 

p( ̂  d k | P k +1 , P k ) 

p( ̂  θk | P k +1 , P k ) p( ̂  αk | P k +1 , P k ) p( ̂ r k +1 | P k +1 ) 

(12) 

or which the PCRLB of estimating joint location P can be given as

([ ̂  P (u ) − P ][ ̂  P (u ) − P ] T ) ≥ F (P ) −1 (13)

here ˆ P denotes to estimated joint location and P denotes the ac-

ual joint location as given in [(13)]. F ( P ) is the Fisher information

atrix (FIM) given as 

 = E 
ˆ r , ̂ d , ̂ θ, ̂ α

[ −∇ 

P 
P ln p ( ̂ r , ˆ d , ˆ θ, ˆ α, ˆ P )] (14)

To calculate the FIM at k th step F ( P 0: k ), we define

p k = p( ̂ r 0: k , 
ˆ d 0: k , 

ˆ θ0: k , ˆ α0: k , 
ˆ P 0: k ) , where ˆ r 0: k � [ ̂ r 0 , ̂  r 1 , . . . , ̂  r k ] 

T , ˆ d 0: k �
 ̂

 d 0 , ˆ d 1 , . . . , ˆ d k ] 
T , ˆ θ0: k � [ ̂  θ0 , 

ˆ θ1 , . . . , 
ˆ θk ] 

T , ˆ α0: k � [ ̂  α0 , ˆ α1 , . . . , ˆ αk ] 
T and

ˆ 
 0: k � [ ̂  P 0 , ˆ P 1 , . . . , ˆ P k ] 

T . Then F ( P 0: k ) can be given as 
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Fig. 3. 3D space parameters between target node and reference node are defined: distance measurement d , azimuth angle θ and pitch angle α. 
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F (P 0: k ) = 

[ 

E(−∇ 

P 0: k −1 

P 0: k −1 
ln p k ) E(−∇ 

P 0: k 

P 0: k −1 
ln p k ) 

E(−∇ 

P 0: k −1 

P 0: k 
ln p k ) E(−∇ 

P 0: k 

P 0: k 
ln p k ) 

] 

� 

[
A k B k 

B 

T 
k 

C k 

] (15)

and the submatrix F k can be obtained by block matrix pseudoin-

verse as 

F k = C k − B 

T 
k A 

−1 
k 

B k (16)

Also, the joint p.d.f for (k+1) th step p k +1 can be written as 

p k +1 = p k p( ̂  d k | P k +1 , P k ) p( ̂  θk | P k +1 , P k ) 

p( ̂  αk | P k +1 , P k ) p( ̂ r k | P k +1 ) 
(17)

With p k +1 , the FIM at (k+1) th step J(P 0: k +1 ) can be calculated with

the same approach as 

F (P 0: k +1 ) = 

⎡ 

⎣ 

A k B k 0 

B 

T 
k 

C k + H 

11 
k 

H 

12 
k 

0 H 

12 
k 

P k +1 + H 

22 
k 

⎤ 

⎦ (18)

where 0 is zero matrices with proper dimension. H 

11 
k 

, H 

12 
k 

, H 

12 
k 

,

and H 

22 
k 

carries the posterior information from the difference be-

tween (k + 1) th and k th step, which is referred to as the knowl-

edge of step length, heading and elevation measurements. They

can be written as 

H 

11 
k = E ˆ d , ̂ θ, ̂ α

[ −∇ 

P k 
P k 

lnp( ̂  d k | P k +1 , P k ) p( ̂  θk | P k +1 , P k ) 

p( ̂  αk | P k +1 , P k )] 
(19)

H 

12 
k = E ˆ d , ̂ θ, ̂ α

[ −∇ 

P k +1 

P k 
lnp( ̂  d k | P k +1 , P k ) p( ̂  θk | P k +1 , P k ) 

p( ̂  αk | P k +1 , P k )] = H 

21 
k 

(20)

H 

22 
k = E ˆ d , ̂ θ, ̂ α

[ −∇ 

P k +1 

P k +1 
lnp( ̂  d k | P k +1 , P k ) p( ̂  θk | P k +1 , P k ) 

p( ̂  αk | P k +1 , P k )] 
(21)

Note that P k +1 denotes to the knowledge of range-based RF local-

ization for joint motion, which is given as 

P k +1 = E ˆ r ,P [ −∇ 

P k +1 

P k +1 
] ln p( ̂ r k +1 | P k +1 ) (22)
he knowledge of RF-based location estimation can be also de-

ived from the inaccuracy of RF-based range estimation as P =
 

T 
k 
	−1 

k 
G k , where G k = ∇ 

T 
P k 

� r k and the diagonal matrix 	k =
iag { λk, 1 , . . . , λk,N } is introduced to collect the variance of pair-

ise range estimates with different on-body receivers at the k th

tep. Note that r k = [ r k, 1 , . . . , r k,N ] denotes to the vector of actual

istance between joints, λk, n denotes to the variance of range esti-

ate between joints. Both of the definitions have been mentioned

n previous sections. 

With the FIM for entire (k+1) steps J(P 0: k +1 ) in [(17)], the pos-

erior information submatrix for estimating ukt1 reads 

F k +1 = P k +1 + H 

22 
k −

[
0 H 

21 
k 

][A k B k 

B 

T 
k 

C k + H 

11 
k 

][
0 

H 

12 
k 

]
= P k +1 + H 

22 
k − H 

21 
k (F k + H 

1 
k 1)(−1) H 

12 
k 

(23)

ince the noises of step length, heading and elevation measure-

ents n k , u k and v k are modeled as zero-mean Gaussian random

ariables, H 

11 
k 

, H 

12 
k 

and H 

22 
k 

can be calculated as 

 

11 
k = −H 

12 
k = H 

22 
k = H k (24)

here 

 k = 

J ˆ d 
(θk , αk ) 

σ 2 
k 

+ 

J ˆ θ
(θk , αk ) 

ε2 
k 

sin 

2 (α) d 2 
+ 

J ˆ α(θk , αk ) 

ξ 2 
k 

d 2 
(25)

ote that J a (b) denotes the numerator of Jacobian matrix, which

an be written as 

J ˆ d 
(θk , αk ) 

= 

⎡ 

⎣ 

cos 2 θsin 

2 α sin θcos θsin 

2 α cos θsin αcos α

sin θcos θsin 

2 α sin 

2 θsin 

2 α sin θsin αcos α
cos θsin αcos α sin θsin αcos α cos 2 α

⎤ 

⎦ 

(26)

J ˆ θ
(θk , αk ) = 

[ 

sin 

2 θ −sin θcos θ 0 

−sin θcos θ cos 2 θ 0 

0 0 0 

] 

(27)
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Fig. 4. PCRLB of the proposed D–H based human motion capturing approach as a 

function of step index. 

s  

t  

e

 

e  

i  

m  

t  

t  

e  

a  

o  

a  

c  

d

 

f  

d  

m  

w  

b  

d  

f  

l  

w

 

r  

o  

t  

d  

c

4

 

v  

l  

P  

i

 

w  

f  

s  
J ˆ θ
(θk , αk ) 

= 

⎡ 

⎣ 

cos 2 θcos 2 α sin θcos θcos 2 α −cos θsin αcos α

sin θcos θcos 2 α sin 

2 θcos 2 α −sin θsin αcos α

−cos θsin αcos α −sin θsin αcos α sin 

2 α

⎤ 

⎦ 

(28) 

herefore, the posterior information submatrix F k +1 for estimating

he joint’s location P k +1 can be recursively calculated by 

 k +1 = P k +1 + H k − H k (F k + H k ) 
−1 H k (29)

Applying Sherman Morrison Woodbury formula with identity

atrices of proper dimension, it can be simplified as 

 k +1 = P k +1 + (H 

−1 
k 

− F −1 
k 

) −1 (30)

here H k shows the effect of image processing based step, heading

nd elevation measurements and P k +1 illustrates the effect of RF

ased location estimation. 

.3. Performance 

In this section, the hybrid localization approach has been im-

lemented and the PCRLB has been calculated to evaluate the ac-

uracy of the proposed approach. Even though there are elegant

xpressions to recursively calculate the FIM, the expressions in

q. (29) usually do not have analytical close-form solution. In order

o deal with that, we employ the monte carlo approach to con-

ert those continuous integrals into discrete summations, and fi-

ally work out the PCRLB. 

The Root-Mean-Square of PCRLB is given by 1 
I 

∑ I 
i =1 �

i 
k 
, where

i 
k 

is the PCRLB on the Root-Mean-Square Error (RMSE) of joint at

tep k in the i th monte carlo trial. i denotes the index for monte

arlo trials and I is the total monte carlo trial number ( I = 20 0 0

s used in this paper). The sampling rate is set as 50 Hz, and hori-

onal and vertical velocity is both 1 m/s. Note that for each monte

arlo trial, we randomly select the initial location for PCRLB calcu-

ation in order to get a fair average of entire human body moving

rocess. 

The experimental scenario is given as follows. Inaccuracy on

tep length measurement are considered to be proportion of the

ctually step length d as σk = ηd k , heading and elevation measure-

ents are considered to have identical variance as εk = ξk = ω are

alculated with η varying from 5% to 10% and ω varying from 10 °
o 30 ° to illustrate the minimum achievable RMSE �k in hybrid

oint localization. PCRLB of the method only using inertial sensors

r RF sensors have been also calculated to provide a comparison

gainst PCRLB. 

Results on PCRLB with various η and ω have been plotted in

ig. 4 , in which the PCRLB with the absence of inertial or dis-

ance sensing are also provided for comparison. It can be seen

hat (1) The knowledge of step length, heading and elevation mea-

urements significantly increase the accuracy of joint capturing.

he PCRLB for hybrid localization drops below 8 cm. (2) The hy-

rid localization accuracy is directly proportional with the accu-

acy of step length, heading and elevation measurements, that is,

ith the increment of η and ω, obvious decrement of RMSE can be

een from the PCRLB plot. (3) PCRLB for hybrid localization stabi-

izes after certain steps regardless of the beginning point and fol-

owing trajectory. With better posterior knowledge of step length

nd headings, the PCRLB stabilize slower. However, with poor step

ength, heading and elevation measurements, the hybrid localiza-

ion approach reaches the maximum achievable performance very

ast. (4) Distinguished from hybrid localization methods, if only in-

rtial sensors are used in the monitoring system, the error may

end to be diverging. In theory, this confirms that inertial capturing
ystem faces the problem of accumulated errors. Besides, it shows

hat our hybrid method can avoid the divergence of accumulated

rrors. 

Different combination of sensors and anchors are also consid-

red, which potentially represent the Anchor sensor arrangement

n practical applications. As described in Section 2 , the trunk re-

ains relatively steady in comparison to the end joints or limbs of

he human body. In consideration of end-effector problem, we set

he joints of neck, chest, left and right hip as reference nodes for

rror bounds estimation. A scenario squared by 2 m ∗ 2 m is chosen

s test field. The experiment human body was placed in the center

f this field and the above reference nodes are respectively located

t joints in the trunk. For comparison, four sets of reference nodes

ombination were chosen serving as a contrast. The selected can-

idate topologies is shown in Fig. 5 . 

PCRLB of above mentioned topologies are displayed in Fig. 6 ,

rom which we can see that (1) Comparing between different can-

idate topologies, the improvement on localization accuracy re-

ains identical for different topologies. (2) The hybrid localization

ith different topologies shares the same number of steps to sta-

ilize. (3) Topology 3 suffers the largest RMSE, may be due to the

ense distribution of candidate Anchors. Topology 4 is preferred

or its minimum RMSE, which could be less than 8 cm. The hybrid

ocation estimation with RF ranging shares identical trend results

ith that of solely RF ranging. 

From above results, the effectiveness of our proposed geomet-

ical model is verified. Due to the end-effect of human motion,

ur model takes D–H parameters into consideration which con-

ains both distance and IMU information. The relative position of

ifferent human body parts is also considered. These superiorities

ontribute to the lower PCRLB and higher capture accuracy. 

. Model evaluation 

The theoretical effectiveness of our proposed motion model is

erified in above section. The introduction of D–H parameters uti-

izes both distance and IMU information to lower the expected

CRLB in theory. Furthermore, we take advantage of this method

n practical application as a validation. 

Human lower limb motion analysis is a typical application of

earable sensing platform. Traditional systems all tend to monitor

oot phase when walking, which just reflects the rhythm of foot-

teps. However, ignoring the relative position between other body
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Fig. 5. Topologies configuration. represents free joints and represents selected anchors. 

Fig. 6. Root-mean-square of PCRLB as a function of index of steps. Different receiver 

topologies are considered. 
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parts, especially leg swings, leads to the lack of some important

features and effective constraint conditions. With the help of pro-

posed geometrical model, using D-H convention, we can propose

limb transformations from the ankle joint to the hip joint. Motion

characteristics of various body parts can easily be obtained, and we

may take this analysis as an example to verify the effectiveness. 

4.1. Platform overview 

In order to describe the details of human motions, motion tran-

sition matrix M 

k 
0 

needs to be constructed to represent the spatial

and temporal features. For this reason, a geometrical kinematics

based wearable sensing platform is designed. The platform is aim-

ing to collect spatial and temporal information (namely D–H pa-

rameters) during the human motion process. Sensing nodes are de-

signed and intended to be put on joints to capture the movement

conditions of joints as well as limbs. The information covers accel-

erated velocity, angular velocity and distances between joints and
ody parts. Among these all, distance information is especially spe-

ial when compared with other platforms. Experiments are con-

ucted on the data set sampled by the above platform at 10 Hz.

e use the presented platform for data collection and perform all

rocessing work online in Matlab with PC (Intel Core i7-6700M

PU, 16GB RAM). The communication between wearable nodes and

he PC is via Bluetooth. 

Our integrated wearable sensor system is composed of two

arts: one control unit and several data acquisition units. The con-

rol unit works as a gateway to control the whole operation pro-

ess via Bluetooth communication. Data acquisition unit is mainly

esponsible for data sensing. Each data acquisition unit has a 6-

xises sensor (MPU6050, which integrates a triaxial accelerome-

er and a triaxial gyroscope), a barometer sensor (MS5611) and

 UWB TOA ranging module (DWM10 0 0). The MEMS sensors are

onnected to a micro-controller (STM32F103) for the sake of sam-

ling efficiency in a rate of 10 Hz. Data are transferred to the con-

rol unit in real-time and also written the realtime data stream

nto its SD card as backups for other offline analysis and applica-

ions. The whole system architecture is demonstrated in Fig. 7 . 

.2. Experiment setup 

In common sense, a whole lower limb movement cycle could

e divided into two phases: stance phase and swing phase. Fur-

hermore, several fine-grained division are studied in [6] , each part

f which owns its related features and parameters. According to

elated references, zero velocity update (ZUPT) [6,7] is the most

idely adopted method to cope with sensor drift errors when the

oot is at rest on the ground in stance phase. However, it should

e noted that ZUPT method is valid only when zero velocity as-

umption is satisfied. Therefore, ZUPT is invalid for knee position

stimation because there is no static moment for the knee during

alking. 

Likewise, distortion could happen toward the motion tracking of

ther parts of human body other than feet. The articulated chain

tructure of proposed human model (especially for lower limbs)

akes it applicable to set up geometrical constraints [30] , which
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Fig. 7. Experimental Platform Settings. 

Fig. 8. Placements deployed with sensing devices and parameters of D-H needed 

to be measured. 
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Fig. 9. Walking trajectory when climbing a spiralstairs with or without applying GC 

method. 

Fig. 10. Comparison of navigation errors as time cumulates. 

i  

p  

n  

v  

t  

P  

c

P  

P  

 

e  

l  

e  

s  

m  

F  

i

 

t  

w  

r  

t  

l  

t  
s based on the concept of forward kinematics from the robot do-

ain. For the above reasons, our proposed geometrical human mo-

ion model is applied. With the introducing of D–H convention,

oints position are more easily to be obtained with considering

inked body parts. Fluctuant errors can be somehow avoided with

ascaded constraints taken into consideration. Three sensor nodes

re separately placed on different parts of lower limbs to form con-

trained states with the complementary geometric relation, which

ffers us a way to correct lower limb motion errors [31] . 

For above considerations, three monitoring devices are de-

loyed on the joints of right leg, namely right ankle, right knee

nd right hip, shown in Fig. 8 . Since human lower limbs can be

reated as a model of inverted pendulum, the geopotential energy

an reach the maximum at the minimum of kinetic energy (the

ertical moment), which is the start time of the implementation

f D–H convention. Knee position estimation [32] is evaluated by

ombining the accurate position information of the foot and the

–H convention. 

.3. Capturing accuracy 

Suppose that all the sensors were kept still before the sam-

ling starts and the displacement of each sensor is relevant to its

riginal position. The inverted pendulum structure of legs signif-
cantly makes hip joint more suitable to be root node when ap-

lied D–H convention. The variations of the knee at time i , de-

oted as P k 
i 

= 

[
P k 

i,x 
P k 

i,y 
P k 

i,z 

]T 
, derived from the displacement

ector of the hip joint P h 
i 

= 

[
P h 

i,x 
P h 

i,y 
P h 

i,z 

]T 
and the basis of mo-

ion vector generates P h 
i 

is the displacement vector of the foot,

 

f 
i 

= 

[ 
P 

f 
i,x 

P 
f 

i,y 
P 

f 
i,z 

] T 
. These transitive relation then forms two

onstraint states. 

 

k 
i = P h i + R 

k 
k −1 P 

h 
i −1 (31)

 

f 
i 

= P k i + R 

k 
k −1 P 

k 
i −1 (32)

In this way, we can substantially confine the broadening of drift

rrors with proposed geometrical model, considering physical re-

ationship when human body conducts movements. To verify the

ffectiveness of this proposed method in human lower limb analy-

is, we experimented with human walking scenarios with designed

odules. One of the subject’s foot walking trajectory is shown in

ig. 9 . A sequence of movements lasted about 45 seconds, includ-

ng climbing spiralstairs and part of walking on level ground. 

For comparison, both tracking trajectory, with or without, using

he proposed method are drawn in Fig. 9 . It is clearly seen that,

ith applying the geometrical constrained model, the experiment

esults are far closer to the ground truth, while on the other hand,

he results without constraints are drifting away as time accumu-

ates. The results remain similar at the very beginning; however,

he gap became larger while time goes on. Detailed accumulated
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Table 1 

Comparison of different capturing algorithms. 

Method Computation cost [mW] Communication cost [mW] Total consumption [mW] 

No constraints 99.7 0 99.7 

ZUPT 138.7 0 138.7 

GC method 133.06 0.6 133.66 
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errors are shown in Fig. 10 . Methods with or without using ZUPT

both face the problem of drift error, especially when the experi-

menter turns around at stair corners. Time accumulated errors are

more likely to be caused when moving direction changes. With

ZUPT method applied into the algorithm, localization error to some

extent can be fixed, but it still exists and it is also critical at turns.

On the contrary, our proposed human motion model shows a good

stability and no clearly drift errors are observed in our experiment.

This is because with the use of proposed model, body connections

are considered and temporal transitions are estimated. Especially

at turns, body constrains can to some extent fix time accumulated

errors. The results suggest that our proposed GC method performs

well while applied in human lower limb analysis. This also con-

firms the conclusion obtained in PCRLB simulation. Methods with

only inertial sensors face the problem of drift errors, but our geo-

metrical constrained model can fix time accumulated errors. 

4.4. Energy consumption 

In this paper, we intend to propose a method that can obtain

an as high accuracy as possible, with acceptable power consump-

tion. Compared with traditional methods, our proposed model can

achieve a rather high motion capturing accuracy, which can be

seen from Fig. 10 . Thus, we further focus on the assessment of

energy consumption. To calculate consumption of our system, we

consider two sources of energy consumption, namely computation

and communication costs [34] , denoted as P comp and P comm 

respec-

tively. The power consumption of the system due to data acquisi-

tion and analysis is then given by: 

Z = P comp + P comm 

(33)

1) Computation cost: It mainly comes from several aspects, in-

cluding sensor power consumption, and the computation cost

for combining results of distributed sensors. 

• Sensor power consumption: MPU6050 [35] , which inte-

grated acceleration and gyroscope, is chosen to measure the

information needed by our proposed model, shown in Eq.

(3) . The nominal values of power used by MPU6050 is no

more than 14.1 mW [35] . Given that data acquisition from

a sensor (i.e., accelerometer or gyroscope) is constant at a

fixed sampling rate of 10 Hz, we allocate a fixed cost to each

sensor. As a result, the sensor power consumption of each

motion node is equal to 14.1 mW. 

• Algorithm computation cost: MCU [36] computation cost is

the most important part in the analysis of energy consump-

tion. In our method, we use an event-driven methodology to

reduce communication traffic. At the initial state, each de-

vice goes to sleep mode to minimize energy and is waiting

for timer interrupt events. Once the interrupt occurs, MCU

wakes up from the sleep mode, starts to capture sensor sig-

nal and transmits it to central unit. The central unit runs

our proposed modeling based method. In order to balance

energy consumption, we switch central node periodically. 

2) Communication cost: It mainly comes from the communication

overhead when the wearable sensors exchange data with each

other. Each captured data is immediately processed and trans-

mitted in batch periodically, and the sensor node turns into

sleep mode back . The nominal values of UWB transmitter is
231 mW in Tx mode, 99 mW in Rx mode, denoted as P Tx and

P Rx respectively. Transmitted package is in fixed length (raw

data in each cycle). Generally, the maximum transmission rate

of dw10 0 0 can reach 6.8Mbps [37] , transmitting time ( t Tx ) is in

nanoseconds, and receiving time ( t Rx ) is about 2 ms. Thus, the

working consumption could be calculated by 

P working = P T x ∗ t T x / (t T x + t Rx ) + P Rx ∗ t Rx / (t T x + t Rx ) (34)

Its sleep current can be as low as 50 nA, when 3.3 V supplies

[37] . The duty cycle ( T duty ) can be very low ( < 3/10 0 0). Thus,

power cost by ranging and data transmitting is almost constant,

denoted as 

P comm 

= P working ∗ T duty + P sleep ∗ (1 − T duty ) (35)

which is around 0.6 mW in our system. 

For comparison, we measured the power consumption of the

hree algorithms, shown in Table 1 . In the aspect of computation

ost, ZUPT and our proposed GC method are slightly higher than

o constraints condition, as they have higher computational com-

lexity. On the other hand, for communication cost, only our pro-

osed method needs to transmit data between nodes. However,

ue to the low duty cycle, its average power consumption is rel-

tively low. Overall, GC method have slightly less power consump-

ion than ZUPT. This is because with the use of proposed model,

he calculation is almost all linear transformations. It makes use of

ommunication between nodes, whose power consumption is low,

o integrate multiple data sources. As a result, it can reduce the

omplexity of the algorithm. 

From above analysis, GC method has significantly higher accu-

acy, as well as acceptable power consumption. It is more suitable

or wearable motion capturing applications. 

. Conclusion 

In this paper, we put forward a geometrical kinematic char-

cteristics based human motion model. We view the whole hu-

an body as a connected articulated entirety and modeled hu-

an motion with dynamic kinematics analysis using Denavit–

artenberg Convention. The complementary geometric relation be-

ween joints and limbs is considered in human motion sensing

rocess, which to some extent limits the sensor drift error. PCRLB

f human motion process are derived based on proposed geomet-

ical model. Simulation results show superior performance when

roposed model is utilized with considering both distance and

MU information. As field experiment, the model is applied in hu-

an lower limb motion sensing applications. Significant reduction

n the localization error and acceptable energy consumption are

hown in the testing results, which is much more efficient than

raditional method ZUPT. 
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