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Every year, injuries associated with fall incidences cause lots of human suffering and assets loss for Parkinson’s disease (PD)
patients. Thereinto, freezing of gait (FOG), which is one of the most common symptoms of PD, is quite responsible for most
incidents. Although lots of researches have been done on characterized analysis and detection methods of FOG, large room for
improvement still exists in the high accuracy and high efficiency examination of FOG. In view of the above requirements, this paper
presents a template-matching-based improved subsequence Dynamic Time Warping (IsDTW) method, and experimental tests
were carried out on typical open source datasets. Results show that, compared with traditional template-matching and statistical
learning methods, proposed IsDTW not only embodies higher experimental accuracy (92%) but also has a significant runtime
efficiency. By contrast, IsDTW is far more available in real-time practice applications.

1. Introduction

Parkinson’s disease is a kind of common neurological disor-
der caused by dopamine and gradually loss of function of
other subcortical neurons. PD usually causes the patients’
movement function disorder, starting from tremors of one
side body or activity clumsy, and further involves the con-
tralateral limb [1, 2]. Clinical manifestations of Parkinson’s
disease are mainly for static tremor, bradykinesia, myotonia,
and freezing of gait. Among them, FOG is a kind of typical
symptom. The patient is not easily maintaining the balance
of the body and is likely to fall on the road surface with
even a bit uneven. Its typical symptoms are loss of ability to
walk in a sudden feet stuckness on the ground and disability
to move in a few minutes or being no longer able to move
again. FOG seems to be common in the start period of
walking, turning, and moving close to the target or when
one is worried whether he is able to get through the known
obstacles, for example, getting through the revolving door.
Every year, fall incidence rates range from 50% to 70%. It is
one of the main reasons for disability to PD patients [1].

Freezing of gait (FOG) is one of the cardinal symptoms of
the PD which is defined as an inability of a person to move

one’s feet in spite of the fact that he/she intends to move [3].
Existingmethods for prevention and cure of FOGmainly rely
on drugs, the most widely used of which is levodopa (LD)
[4]. However, drug’s effect duration is generally 2–6 h, and
different patients’ drug resistance is various to different kinds
of drugs. These specificities may lead to large fluctuations,
showing up as the patient suddenly cannot move or can
suddenly move freely. These two appearances alternate in a
fewminutes, namely, “On-Off” phenomenon.Once “On-Off”
appears, it is hardly to be cured [5].

In addition, some nondrug therapy methods can also be
used in the prevention and treatment of FOG. PD patients
complete the corresponding action according to the instruc-
tions (like music rhythm, visual cues, etc.) [6–8].These coor-
dination practices are proved to be effective in keeping FOG
from getting worse. Plotnik et al. [6] suggested that external
tempo clues were of great help to increase walking speed sig-
nificantly for PDpatients. Comparedwith treatmentmethods
relying on drugs, with the instruction of external informa-
tion, PD patients could be prepared in advance and can
respond to the possibility of FOG, as well as the happening of
“On-Off” phenomenon.
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Figure 1: A typical pair of sequences for template matching.

For both drug and nondrug therapy methods, the detec-
tion and forewarning of FOG are significantly important.
Wearable sensors are widely used to realize the real-time
detection and alarming of FOG for PD patients. Previous
studies usually focus on the fusion of sensors like barore-
ceptor, IMU, and so on. They capture the sensor signals
when PD patients in activity do deep analysis of the wavelets
and give out alarms before FOG occurs. The research topics
about forewarning of FOG based on wearable sensors mainly
concentrate on the selection of sensors [5], locations [9], and
high effective algorithms [10].

Different from the traditional statistical methods [5–10],
template matching is a high effective recognition method
with both high recognition accuracy and efficiency, which has
been applied to physical activity [11–13]. Muscillo et al. [11]
proposed user-dependent templates to target recognition of
arm-specific tasks. Likewise, Chen and Shen [12] focused on
recognizing activities performed with the right upper limb
using a classification framework based on template match-
ing. Stiefmeier et al. [13] proposed an innovative approach
consisting of encoding motion data into sequence of finite
symbols and performing activity recognition by using string-
matching algorithms. However, to the best of our known, no
effort has been paid in the real-time detection of FOG.

To summarize, traditional statistical methods for FOG
detection have low accuracy and efficiency, and it can hardly
meet the requirements for practice real-time applications.
Template-matching method is of high performance advan-
tages; however, it is seldom used in FOG detection. The
purpose of this paper was to investigate the use of template
matching for the detection of FOG.

The rest of this paper is organized as follows: typical
template-matching methods are introduced in Section 2.
In Section 3, the framework of our system is presented
and an improved sDTW algorithm (IsDTW) is illustrated.
The proposed algorithm is verified on an open dataset and
results are analyzed in Section 4. Proposed IsDTW algorithm
is compared with both traditional template methods and
statistical methods in recognition accuracy and real-time
performance. The conclusions of our work are given in
Section 5.

2. Template-Matching Methods

Template-matching algorithm is an approach for comparing
two-time sequences in terms of both their state anddynamics.
Time series can be used to classify primitive physical activities

from data provided by wearable sensors, such as accelerom-
eters. Template matching is a high-level machine learning
technique that identifies the parts on one sample that match
a predefined template.

2.1. Problem Formulation. A typical pair of sequences for
template matching is shown in Figure 1. Define sequence 𝑋
as template signal and 𝑌 as recorded signal, whose lengths
are, respectively, 𝑛 and𝑚; namely,

𝑋 = (𝑡1, 𝑥1) , (𝑡2, 𝑥2) , . . . , (𝑡𝑖, 𝑥𝑖) , . . . , (𝑡𝑛, 𝑥𝑛) ,
𝑌 = (𝑡1, 𝑦1) , (𝑡2, 𝑦2) , . . . , (𝑡𝑗, 𝑦𝑗) , . . . , (𝑡𝑚, 𝑦𝑚) . (1)

Each subsequence of the time series will be compared
with the template 𝑋. Distance based similarity between the
template and the time series segment (denoted as dist(𝑋, 𝑌𝑖𝑗))
is computed. Finally, we will identify the best similarity mea-
sures by the distance as the probable template occurrences.
The smaller the distance is, the more similar they are. We
are intending to find the optimal subsequence in 𝑌 whose
dist(𝑋, 𝑌𝑖𝑗) value is smaller than given threshold.

Distance based similarity measurement method could be
various, and we will introduce some of the most widely used
methods.

2.2. Typical Template-Matching Methods

2.2.1. Euclidean Distance. Euclidean metric, namely,
Euclidean distance, is a common adopted definition of
distance. It refers to the actual distance between two points
in multidimensional space or the natural length of vector
(namely, the distance between this point and the origin
point). Respectively, denote 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑚]
and 𝑌 = [𝑦1, 𝑦2, . . . , 𝑦𝑖, . . . , 𝑦𝑛] as two temporal sequences.
Thus, the distance 𝑑𝑖 (𝑖 = 0, . . . , 𝑛 − 𝑚 − 1, 𝑛 < 𝑚) could
be calculated from vectors 𝑋 and 𝑌. For the ith sample, the
regularized Euclidean distance could be represented as

𝑑𝑖 = √ 𝑚∑
𝑘=1

(𝑌 (𝑖 + 𝑘) − 𝑋 (𝑘))2. (2)

2.2.2. Dynamic Time Wrapping (DTW). DTW could be
used to measure the similarity or distance of these two
sequences. The core of DTW is based on the idea of dynamic
programming (DP), automatically searching for the optimal
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path with local optimization method. Taking the minimum
accumulation of distortion between two vectors as the objec-
tive could avoid errors caused by different time length.

In order to align the sequences 𝑋 and 𝑌, a 𝑛 × 𝑚 matrix
is needed, while element (𝑖, 𝑗) represents the DTW distance‖𝑑(𝑥𝑖, 𝑦𝑗)‖ (generally 1st normal form ‖𝑑(𝑥𝑖, 𝑦𝑗)‖1) between𝑥𝑖 and 𝑦𝑗. Namely, each element in the matrix stands for the
similarity between two points in 𝑋 and 𝑌, and the smaller
the distance is, the greater the similarity is. DP is applied to
find optimal path crossing a number of grids in the matrix
and calculation is conducted among the points crossed by the
path.

The paths that satisfy all above conditions could be as
many as exponential, but the minimum cost path is the one
we are interested in. Thus, the following equation could be
achieved:

Dist (𝑋, 𝑌) = 𝑑 (𝑥𝑖, 𝑦𝑗) +min
{{{{{{{{{
Dist (𝑖 − 1, 𝑗 − 1)
Dist (𝑖 − 1, 𝑗)
Dist (𝑖, 𝑗 − 1) .

(3)

2.2.3. Subsequence Dynamic TimeWrapping (sDTW). sDTW
is designed for searching repeated “child segments” from a
long sequence. The core idea of sDTW is dividing distance
matrix𝐷 into subbands and using traditional DTW to search
the optimal path in subbands. Firstly, divide 𝐷 into several
inclined strip-like regions with the same width. Among the
overlap, 𝑠1 and 𝑠2 are, respectively, the starting point of the
two subbands. Assume that the displacement from 𝑠1 to 𝑠2 is𝑅 and the width of inclined region is 2𝑅+ 1. Thus, for a𝑚×𝑛
matrix, the number of its contained regions is ⌊(𝑛 − 1)/𝑅 +(𝑚 − 1)/𝑅⌋.

Afterwards, find the optimal path in each strip-like region
using DTW. In each optimal path, only a small segment is
corresponding to the similar parts of these two consecutive
sequences. So we need to cut out the specific subpaths, which
should meet these requirements: (1) the points contained in
subpath; namely, the length of subpath is smaller than 𝐿; (2)
the average of all points in the subpath; namely, the average
of subpath is smaller than 𝜃. Given a subpath with𝑁 points,
whose length is 𝐿 and its average is 𝜃, working out the LCMA
(length-constrained minimum average) is as follows:

𝑓 = min
1≤𝑠≤𝑡≤𝑁

1𝑡 − 𝑠 + 1
𝑡∑
𝑘=𝑠

Dist (𝑖𝑘, 𝑗𝑘) , 𝑡 − 𝑠 + 1 ≥ 𝐿. (4)

2.2.4. Cross Correlation. In signal processing, it is often to
study the similarity of two signals, in order to implement
signal detection, recognition, and extraction. The method
that could be used to analyze the similarity of signals is called
cross correlation. Given two temporal sequences 𝑋 and 𝑌,
whose length is, respectively, 𝑛 and 𝑚, its cross correlation
function is defined as follows:

𝐶𝑌𝑋 (𝜏) = 1𝑛 − 1
𝑛−1∑
𝑖=0

[𝑌 (𝑖 + 𝜏)] [𝑋 (𝑖)] . (5)

Generally speaking, cross correlation index could be used to
normalize the standard deviation of two signals, and the cross
correlation coefficient is defined as follows:

𝛾𝑌𝑋 (𝜏) = 𝐶𝑌𝑋 (𝜏)𝜎𝑌𝑌𝜎𝑋𝑋 , (6)

where 𝜎𝑋𝑋 and 𝜎𝑌𝑌 are, respectively, the standard deviation
of 𝑋 and 𝑌 and the value of 𝛾𝑌𝑋(𝜏) is between −1 and +1. If𝛾𝑌𝑋(𝜏) = −1, it illustrates that 𝑋 and 𝑌 have the same shape
but opposite phase. If 𝛾𝑌𝑋(𝜏) = 0, it illustrates that 𝑋 and 𝑌
have no similarities. If 𝛾𝑌𝑋(𝜏) = −1, it illustrates that𝑋 and 𝑌
are totally the same. When the signal is compared with itself,
it is called self-correlation, defined as follows:

�̂�𝑌𝑌 (𝜏) = 1𝑚 − 1
𝑚−𝜏−1∑
𝑖=0

[𝑌 (𝑖 + 𝜏)] [𝑌 (𝑖)] . (7)

This function is often used to identify periodic signals from
white noise in order to recognize signal cycle and repetitive
patterns.

3. System Overview and Algorithm Design

Former researchers have studied the detection method for
FOG with time and frequency domain features extracted by
FFT [9].These studies have already achieved a good accuracy
but poor real-time characteristic. In this chapter, based on
the point of template matching, we proposed an improved
subsequence Dynamic Time Wrapping (IsDTW) method, to
realize the real-time and high precision FOG detection and
alarm. IsDTWgives out a good real-time performance as well
as high accuracy.

The whole process could be divided into two stages:

(1) Data preprocessing: the main work is template gen-
erating and threshold confirmation, namely, model
training stage.

(2) Subsequence searching: estimate the similarity using
proposed algorithm, and detect FOG.

Notations. The original signal is denoted as 𝑋 = {(𝑡1, 𝑥1),(𝑡2, 𝑥2), . . . , (𝑡𝑖, 𝑥𝑖), . . . , (𝑡𝑛, 𝑥𝑛)}, and the query subsequence
is denoted as 𝑌 = {(𝑡1, 𝑦1), (𝑡2, 𝑦2), . . . , (𝑡𝑗, 𝑦𝑗), . . . , (𝑡𝑚, 𝑦𝑚)}.𝑋𝑖,𝑗 stands for the subsequence from time 𝑖 to time 𝑗 in
sequence𝑋. The framework of the whole system is presented
in Figure 2.

3.1. Template Generation. The template sequence is 𝑌 ={(𝑡1, 𝑦1), (𝑡2, 𝑦2), . . . , (𝑡𝑗, 𝑦𝑗), . . . , (𝑡𝑚, 𝑦𝑚)}, and its length𝑚 is
the predefined window length.The sequence contains several
sensor data subsequences, such as accelerometer data𝐴𝑥,𝐴𝑦,𝐴𝑧. The sample data contains lots of labeled FOG and non-
FOGdata. Divide these data into subsequences with length of𝑚, and average them with method of “interp1” integrated in
Matlab. Apply this operation to each axis of the subsequences,
and finally the template of FOG is achieved, as shown in
Figure 3.
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Figure 2: System framework diagram.
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Figure 3: Gait template: (a) regular gaits; (b) FOG template.

3.2. Threshold Confirmation. The most urgent issue to be
solved in proposed algorithm is how to determine the
threshold value of loss of function. In common sense, due
to the differences of various subjects and noise, the expected
threshold value could vary from person to person. For the
above reasons, in this paper, we proposed a dynamic thresh-
old estimation method based on former statistical model. In
data preprocessing stage, we construct an Artificial Neural
Network (ANN) classifier to obtain the optimal threshold
value 𝜀, which is suitable for each subject, using labeled
training data. This method depends on machine learning
technique, running on a large amount of actual data, which
makes it have higher running speed and credibility.

3.3. Similarity Computation: Improved Subsequence DTW:
IsDTW. Similar to DTW, we proposed this improved sDTW

method to compute the similarity of two sequences by
updating distance matrix. In each loop of the algorithm pro-
cessing, two variables are stored, 𝐷(𝑡, 𝑘) and 𝑋(𝑡, 𝑘). 𝐷(𝑡, 𝑘)
denotes the minimum DTW value of sequence 𝑌 and sub-
sequence 𝑆𝑖,𝑡. 𝑋(𝑡, 𝑘) denotes the start time of sequence 𝑋𝑖,𝑡,
namely, 𝑖 = 𝑋(𝑡, 𝑘). 𝐷(𝑡, 𝑘) could be obtained by following
methods:

𝐷 (𝑡, 𝑘) = 𝑥𝑡 − 𝑦𝑘 + 𝐷best,

𝐷best = min

{{{{{{{{{{{

Dist (𝑡, 𝑘 − 1)
Dist (𝑡 − 1, 𝑘)
Dist (𝑡 − 1, 𝑘 − 1) ,

(8)
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Input: 𝑥𝑡 at time 𝑡
Output: similar subsequences: 𝑆𝑖,𝑡
For 𝑘 = 1 to𝑚 do

Calculate𝐷(𝑡, 𝑘) and𝑋(𝑡, 𝑘)
End
IF𝐷min ≤ 𝜀 then

IF ∀𝐷(𝑡, 𝑘) > 𝐷min ∨ 𝑋(𝑡, 𝑘) > 𝑡𝑒 then
Return𝐷min, 𝑡𝑠, 𝑡𝑒𝐷min = +∞
For 𝑘 = 1 to𝑚 do

IF𝑋(𝑡, 𝑘) ≤ 𝑡𝑒 then𝐷(𝑡, 𝑘) = +∞
End

End
End

End
If 𝐷(𝑡,𝑚) ≤ 𝜀 ∧ 𝐷(𝑡,𝑚) ≤ 𝐷min then𝐷min = 𝐷(𝑡, 𝑚)𝑡𝑠 = 𝑋(𝑡,𝑚)𝑡𝑒 = 𝑡
End
For 𝑘 = 0 to𝑚 do𝐷(𝑡 − 1, 𝑘) = 𝐷(𝑡, 𝑘)𝑋(𝑡 − 1, 𝑘) = 𝐷(𝑡, 𝑘)
End

Algorithm 1

where 𝐷(𝑡, 0) = 0 and 𝐷(0, 0) = 𝐷(0, 𝑘) = +∞(𝑡 =1, 2, . . . , 𝑛 and 𝑘 = 1, 2, . . . , 𝑚). Similarly, 𝑋(𝑡, 𝑘) could be
obtained by following methods:

𝑋(𝑡, 𝑘)
= {{{{{{{{{

𝑋(𝑡, 𝑘 − 1) , If 𝐷best = 𝐷 (𝑡, 𝑘 − 1)𝑋 (𝑡 − 1, 𝑘) , If 𝐷best = 𝐷 (𝑡 − 1, 𝑘)𝑋 (𝑡 − 1, 𝑘 − 1) , If 𝐷best = 𝐷 (𝑡 − 1, 𝑘 − 1) ,
(9)

where𝑋(𝑡, 0) = 𝑡.
IsDTW is targeted for searching all possible subsequences𝑋𝑖,𝑗 that the similarity satisfies the given threshold 𝜀 between

sequence 𝑋 and template 𝑌, namely Dist(𝑋𝑖,𝑗, 𝑌) ≤ 𝜀, where𝑗 = 𝑖 +𝑚−1 and 𝑖 = 1, 2, . . . , 𝑛 −𝑚+1. The whole algorithm
could be described as shown in Algorithm 1.

4. Results and Analysis

This section may be divided by subheadings. It should
provide a concise and precise description of the experimental
results and their interpretation as well as the experimental
conclusions that can be drawn.

4.1. Datasets. The method proposed in this paper is verified
on open source dataset [14]. Bachlin et al. recruited 10 PD
patients as experimental subject, among which there are 7
male and 3 female, whose ages are 66.5±4.8 years and disease
duration is 13.7±9.67 years. All subjects arewith the history of
FOG and could walk freely in the condition of “off-medicine”

without external assistance. All data is collected and analyzed
in the condition of “off-medicine.”

Subjects are required to complete the data collecting
under the following experimental scenarios: walking forward
and backward in a straight line, randomly walking and
stopping, rotating 360 degrees, and daily life activities. The
entire experimental processes are recorded by video camera.
Twomedical personnel diagnose the two possible conditions,
FOG and non-FOG, from the real-time video information.
Every time FOG occurs, record the starting and ending time.
Each subject is mounted with three triaxial accelerometers,
respectively, placed on shank, thigh, and lower back. The
sampling rate is set as 64Hz. Eventually, sampled from 10 PD
subjects, 8 hours and 20 minutes data are collected, which
contains 237 events of FOG.

Figure 4 shows one patient’s actual recorded data during
the experimental process.The subject ran into FOGcondition
exactly at the very beginning of the whole process and then
continued walking normally after a short break; then, sensors
detect trembling caused by FOG, and the legs got stuck; after
a long time of FOG phenomenon, the subject came into
a very fast march; finally, the subject rested down after a
short FOG. The experimental results are matched with those
given by the two medical personnel, which are marked in the
figure with color fonts. Moreover, as shown in the figure, in
the first and third FOG segments, short FOG stuckness is
recognized rightly other thanmistaken for rest; in the second
FOG segment, the leg trembling caused by FOG is also
recognized. These two points further verify the effectiveness
of the proposed algorithm.
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Figure 5: IsDTWmatching diagram: (a) with FOG; (b) with regular gaits.

4.2. Results Discussion. Figure 5 shows the template-
matching results with using IsDTW to detect FOG and
regular gaits. It could be clearly seen that when FOG template
compares with pathological data, shown in Figure 5(a), the
DTW path tends to be more straight and the cumulative
distance (namely,𝐷) is smaller. It indicates that the compared
two subsequences have higher similarity, and in other words,
the detection result is FOG. When FOG template compares
with disease-free data, shown in Figure 5(b), the DTW path
is more winding and the cumulative distance is bigger, and
the detection result is non-FOG.

The effect of FOG detection and sensor locations has
been analyzed separately by ROC curve as follows. IsDTW
is applied to the dataset and ROC curves of each subset are
drawn in Figure 6, namely, lower back mounted sensor (blue
curve), thighmounted sensor (brown curve), shankmounted
sensor (red curve), and all three sensors (green curve). Since
the detection method has a better performance when the

ROC curve is closer to upper left corner, we conclude from
visual inspection that it is with better performance when all
sensor data is used. When only shank data is adopted, the
result shows less better performance.Thismay be because the
shank part can more reflect the characteristics of FOG.

4.3. Compared with Template-Matching Methods. In this
paper, several template-matching methods are selected to
do FOG detection on open source dataset [14]. Various
experimental results are achieved, as shown in Figure 7.
The overall dataset contains sensor data collected from three
accelerometers, shank, thigh, and lower back. Experiments
are conducted with the whole dataset and each part of it,
respectively. In different scenarios, our proposed IsDTW
algorithmall outperformed the others. Following conclusions
could be achieved:

(1) Each algorithm performs differently on various
datasets. The best result was obtained when all data
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is utilized, while the second best is with only shank
data. Thus, it can be seen that shank responses to the
FOG phenomenon for maximum efficiency, and the
other parts play a supporting roles.

(2) On different datasets, the proposed IsDTWalgorithm
all achieved the best result, which can to some extent
reflects the stability of the algorithm. Meanwhile, the
best result could be as high as 92%. Compared with
the others, IsDTW keeps updating the minimum
distance path and maintain a high efficiency as well
as high accuracy. Besides, using ANN to update the
dynamic threshold, it improves the migration ability
of the algorithm.

Table 1: The list of selected features.

Features Domain
Mean Time
Variance Time
Root mean square Time
Range (maximum–minimum) Time
Total energy Time
Skewness Time
Main frequency Frequency
Entropy Frequency
Quartile Frequency

(3) Generally, DTW related algorithms work better than
Euclidean and cross correlation, which indicates that
DTW has more advantages for the identification of
sequences with variable length.

4.4. Compared with Statistical Methods. For further verifica-
tion of proposed IsDTW, comparison experiments are carried
out between template-matching FOG detection methods
and traditional statistical classification methods, including
Decision Tree (DT), Näıve Bayesian Network (NBN), and
Artificial Neural Network (ANN). According to [15], 13
common used time-domain and frequency domain features
are selected, and 9 of them are chosen to be applied to
classification with Relief method [16].The chosen features are
listed in Table 1.

Taking advantage of the open source tool Weka [17],
comparison experiments are all performed and compared
with proposed template-matchingmethod. Results are shown
in Table 2. It can be seen that IsDTW has significant advan-
tages in classification accuracy, namely, IsDTW > ANN >
NBN > DT. ANN stands out among statistical methods with
an accuracy 0.88 but is still lower than that of IsDTW. In the
meantime, its runtime efficiency performs lower than that
of IsDTW which can hardly meet the requirements of real-
time in practice applications. As DT is a kind of lightweight
algorithm with simple principle, it has high efficiency but its
accuracy may not meet the real-time needs.

Therefore, the IsDTWmethod proposed in this paper has
the advantages of both high precision and real-time capabil-
ity, and it may meet the demands of practical application.

5. Conclusions

In this paper, we discuss the detection of FOG with uti-
lizing of template-matching methods. Contrast experiments
are carried out on open source dataset OPPORTUNITY.
Template-matching methods are compared with Euclidean,
DTW, sDTW, and cross correlation. Experimental results
show that template-matching methods have certain advan-
tages, and our proposed IsDTW apparently has higher accu-
racy. For comparison, IsDTW is compared with nontemplate
methods (statistical methods), and the results show that our
algorithm has not only higher experimental accuracy but to a
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Table 2: Performance comparison of IsDTW with statistical machine learning methods.

Methods DT NBN ANN IsDTW
Accuracy 0.77 0.81 0.88 0.92
Runtime (s) 0.55 1.26 3.52 0.64

certain extent is better than traditional methods on runtime
efficiency, making it more applicable in practice applications.
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